Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1

Abstract

In the CA1 region of the rat hippocampus, long-term potentiation (LTP) requires the activation of NMDA receptors (NMDARs) and leads to an enhancement of AMPA receptor (AMPAR) function. In neonatal hippocampus, this increase in synaptic strength seems to be mediated by delivery of AMPARs to the synapse. Here we studied changes in surface expression of native AMPA and NMDA receptors following induction of LTP in the adult rat brain. In contrast to early postnatal rats, we find that LTP in the adult rat does not alter membrane association of AMPARs. Instead, LTP leads to rapid surface expression of NMDARs in a PKC- and Src-family-dependent manner. The present study suggests a developmental shift in the LTP-dependent trafficking of AMPA receptors. Moreover, our results indicate that insertion of NMDA receptors may be a key step in regulating synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term potentiation does not alter the membrane surface expression of AMPA receptor subunits in adult rat CA1.
Figure 2: Long-term potentiation enhances membrane surface expression of NMDA receptors.
Figure 3: LTP alters the subcellular distribution of NMDA but not AMPA receptors.
Figure 4: Enhanced function of NMDA receptors with LTP stimulation occurs via a PKC and Src family tyrosine kinase pathway. (a) Responses isolated in the presence of the AMPA receptor antagonist NBQX (2 μM) showed a rapid potentiation following LTP stimulation. Responses were abolished by the addition of APV.
Figure 5: LTP enhances surface expression of NMDA receptors via a PKC and Src family tyrosine kinase pathway and increases tyrosine phosphorylation of NR2A.
Figure 6: PKC activation and LTP stimulation upregulate surface expression of NR1 splice variants containing the C2 cassette.
Figure 7: Enhanced surface expression of NMDA receptor subunits occurs rapidly and persists for at least 3 h after LTP induction.

Similar content being viewed by others

References

  1. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  2. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  3. Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci. 2, 31–36 (1999).

    Article  CAS  Google Scholar 

  4. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  CAS  Google Scholar 

  5. Racca, C., Stephenson, F. A., Streit, P., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    Article  CAS  Google Scholar 

  6. Lan, J. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nat. Neurosci. 4, 382–390 (2001).

    Article  CAS  Google Scholar 

  7. Lu, W. Y. et al. G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2, 331–338 (1999).

    Article  CAS  Google Scholar 

  8. Huang, Y. et al. CAKbeta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496 (2001).

    Article  CAS  Google Scholar 

  9. O'Dell, T. J., Kandel, E. R. & Grant, S. G. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560 (1991).

    Article  CAS  Google Scholar 

  10. Hall, R. A. & Soderling, T. R. Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. Neuroscience 78, 361–371 (1997).

    Article  CAS  Google Scholar 

  11. Hall, R. A. & Soderling, T. R. Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J. Biol. Chem. 272, 4135–4140 (1997).

    Article  CAS  Google Scholar 

  12. Nayak, A. S., Moore, C. I. & Browning, M. D. Ca2+/calmodulin-dependent protein kinase II phosphorylation of the presynaptic protein synapsin I is persistently increased during long-term potentiation. Proc. Natl. Acad. Sci. USA 93, 15451–15456 (1996).

    Article  CAS  Google Scholar 

  13. Nayak, A., Zastrow, D. J., Lickteig, R., Zahniser, N. R. & Browning, M. D. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683 (1998).

    Article  CAS  Google Scholar 

  14. Pickard, L., Noel, J., Henley, J. M., Collingridge, G. L. & Molnar, E. Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J. Neurosci. 20, 7922–7931 (2000).

    Article  CAS  Google Scholar 

  15. Mammen, A. L., Huganir, R. L. & O' Brien, R. J. Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J. Neurosci. 17, 7351–7358 (1997).

    Article  CAS  Google Scholar 

  16. Dunah, A. W. & Standaert, D. G. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J. Neurosci. 21, 5546–5558 (2001).

    Article  CAS  Google Scholar 

  17. David, V., Hochstenbach, F., Rajagopalan, S. & Brenner, M. B. Interaction with newly synthesized and retained proteins in the endoplasmic reticulum suggests a chaperone function for human integral membrane protein IP90 (calnexin). J. Biol. Chem. 268, 9585–9592 (1993).

    CAS  PubMed  Google Scholar 

  18. Miyatani, S. et al. Neural cadherin: role in selective cell–cell adhesion. Science 245, 631–635 (1989).

    Article  CAS  Google Scholar 

  19. Bashir, Z. I., Alford, S., Davies, S. N., Randall, A. D. & Collingridge, G. L. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349, 156–158 (1991).

    Article  CAS  Google Scholar 

  20. Aniksztejn, L. & Ben-Ari, Y. Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. J. Neurophysiol. 74, 2349–2357 (1995).

    Article  CAS  Google Scholar 

  21. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1, 911–917 (1988).

    Article  CAS  Google Scholar 

  22. Lau, L. F. & Huganir, R. L. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270, 20036–20041 (1995).

    Article  CAS  Google Scholar 

  23. Grosshans, D. R. & Browning, M. D. Protein kinase C activation induces tyrosine phosphorylation of the NR2A and NR2B subunits of the NMDA receptor. J. Neurochem. 76, 737–744 (2001).

    Article  CAS  Google Scholar 

  24. Rosenblum, K., Dudai, Y. & Richter-Levin, G. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc. Natl. Acad. Sci. USA 93, 10457–10460 (1996).

    Article  CAS  Google Scholar 

  25. Rosenblum, K., Berman, D. E., Hazvi, S., Lamprecht, R. & Dudai, Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J. Neurosci. 17, 5129–5135 (1997).

    Article  CAS  Google Scholar 

  26. Parfitt, K. D. & Madison, D. V. Phorbol esters enhance synaptic transmission by a presynaptic, calcium-dependent mechanism in rat hippocampus. J. Physiol. (Lond.) 471, 245–268 (1993).

    Article  CAS  Google Scholar 

  27. Waters, J. & Smith, S. J. Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms. J. Neurosci. 20, 7863–7870 (2000).

    Article  CAS  Google Scholar 

  28. Chazot, P. L. & Stephenson, F. A. Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J. Neurochem. 68, 507–516 (1997).

    Article  CAS  Google Scholar 

  29. Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 19, 7781–7792 (1999).

    Article  CAS  Google Scholar 

  30. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    Article  CAS  Google Scholar 

  31. Heynen, A. J., Quinlan, E. M., Bae, D. C. & Bear, M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).

    Article  CAS  Google Scholar 

  32. Shi, S., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  33. Standley, S., Roche, K. W., McCallum, J., Sans, N. & Wenthold, R. J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898 (2000).

    Article  CAS  Google Scholar 

  34. Vissel, B., Krupp, J. J., Heinemann, S. F. & Westbrook, G. L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  Google Scholar 

  35. Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  36. Lu, Y. M., Roder, J. C., Davidow, J. & Salter, M. W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998).

    Article  CAS  Google Scholar 

  37. Salter, M. W. Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem. Pharmacol. 56, 789–798 (1998).

    Article  CAS  Google Scholar 

  38. Gardoni, F. et al. Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J. Neurosci. 21, 1501–1509 (2001).

    Article  CAS  Google Scholar 

  39. Benke, T. A., Lüthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  Google Scholar 

  40. Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  Google Scholar 

  41. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  42. Snell, L. D. et al. Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Brain Res. Mol. Brain Res. 40, 71–78 (1996).

    Article  CAS  Google Scholar 

  43. Stone, L. M., Browning, M. D. & Finger, T. E. Differential distribution of the synapsins in the rat olfactory bulb. J. Neurosci. 14, 301–309 (1994).

    Article  CAS  Google Scholar 

  44. Wenthold, R. J., Yokotani, N., Doi, K. & Wada, K. Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J. Biol. Chem. 267, 501–507 (1992).

    CAS  PubMed  Google Scholar 

  45. Petralia, R. S., Wang, Y. X., Mayat, E. & Wenthold, R. J. Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J. Comp. Neurol. 385, 456–476 (1997).

    Article  CAS  Google Scholar 

  46. Porter, R. M. et al. Monoclonal antibodies to cytoskeletal proteins: an immunohistochemical investigation of human colon cancer. J. Pathol. 170, 435–440 (1993).

    Article  CAS  Google Scholar 

  47. Siegel, S. J. et al. Regional, cellular, and ultrastructural distribution of N-methyl-D-aspartate receptor subunit 1 in monkey hippocampus. Proc. Natl. Acad. Sci. USA 91, 564–568 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.L. Dell'Acqua, J.F. MacDonald and A.C. Spalding for advice concerning this manuscript. D.R.G. and D.A.C. are funded by individual NRSAs from NIMH. S.J.C. is supported by an individual NRSA from NIAAA. This work was also funded by NIAAA RO1 AA09675 and NIH AG04418-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Browning.

Ethics declarations

Competing interests

M.D.B. has a financial interest in Phosphoresolutions (Aurora, Colorado), a company that sells some of the NMDA antibodies used in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosshans, D., Clayton, D., Coultrap, S. et al. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nat Neurosci 5, 27–33 (2002). https://doi.org/10.1038/nn779

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn779

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing