Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limits to the temporal fidelity of cortical spike rate signals

Abstract

The cerebral cortex processes information primarily through changes in the spike rates of neurons within local ensembles. To evaluate how reliably the average spike rate of a group of cortical neurons can represent a time-varying signal, we simulated an ensemble with realistic spike discharge behavior. We found that weak interneuronal correlation, or synchrony, allows the variability in spike rates of individual neurons to compromise the ensemble representation of time-varying signals. Brief cycles of sinusoidal modulation at frequencies above 115 Hz could not be represented by an ensemble of hundreds of neurons whose interneuronal correlation mimics that of the visual cortex. The spike variability and correlation assumed in our simulations are likely to apply to many areas of cortex and therefore may constrain the fidelity of neural computations underlying higher brain function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model neurons mimic the variability and correlation of neurons in cortex.
Figure 2: Correlation causes fluctuations in the ensemble representation of a signal with a constant spike rate.
Figure 3: Random fluctuations in the ensemble spike rate can mimic a time-varying signal.
Figure 4: Correlation-induced fluctuations limit the temporal fidelity of the ensemble spike rate.
Figure 5: Ensemble fidelity is affected by firing rate dynamic range and signal width.
Figure 6: Ensemble fidelity depends on the time scale and magnitude of correlation.

Similar content being viewed by others

References

  1. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1993).

    Article  CAS  Google Scholar 

  2. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994).

    Article  CAS  Google Scholar 

  3. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: implications for connectivity, computation and information coding. J. Neurosci. 18, 3870–3896 (1998).

    Article  CAS  Google Scholar 

  4. Braitenberg, V. & Schuz, A. Anatomy of the Cortex: Statistics and Geometry (Springer, Berlin, 1991).

    Book  Google Scholar 

  5. Albright, T. D., Jessell, T. M., Kandel, E. R. & Posner, M. I. Neural science: a century of progress and the mysteries that remain. Neuron 25 Suppl, S1–S55 (2000).

    Article  Google Scholar 

  6. Shadlen, M. N. & Movshon, J. A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999).

    Article  CAS  Google Scholar 

  7. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    Article  CAS  Google Scholar 

  8. Johnson, K. O. Sensory discrimination: neural processes preceding discrimination decision. J. Neurophysiol. 43, 1793–1815 (1980).

    Article  CAS  Google Scholar 

  9. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance [published erratum appears in Nature 1994 Sep 22;371(6495):358]. Nature 370, 140–143 (1994).

    Article  CAS  Google Scholar 

  10. Bair, W., Zohary, E. & Newsome, W. T. Correlated firing in Macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21, 1676–1697 (2001).

    Article  CAS  Google Scholar 

  11. Fetz, E., Toyama, K. & Smith, W. in Cerebral Cortex (eds. Peters, A. & Jones, E. G.) 1–47 (Plenum, New York, 1991).

    Google Scholar 

  12. Gawne, T. J. & Richmond, B. J. How independent are the messages carried by adjacent inferior temporal cortical neurons? J. Neurosci. 13, 2758–2771 (1993).

    Article  CAS  Google Scholar 

  13. Das, A. & Gilbert, C. D. Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections. J. Neurophysiol. 74, 779–792 (1995).

    Article  CAS  Google Scholar 

  14. Lee, D., Port, N. L., Kruse, W. & Georgopoulos, A. P. Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J. Neurosci. 18, 1161–1170 (1998).

    Article  CAS  Google Scholar 

  15. Salinas, E., Hernandez, A., Zainos, A. & Romo, R. Periodicity and firing rate as candidate neural codes for the frequency of vibrotactile stimuli. J. Neurosci. 20, 5503–5515 (2000).

    Article  CAS  Google Scholar 

  16. Gerstein, G. & Mandelbrot, B. Random walk models for the spike activity of a single neuron. Biophys. J. 4, 41–68 (1964).

    Article  CAS  Google Scholar 

  17. Ricciardi, L. & Sacerdote, L. The Ornstein-Uhlenbeck process as a model for neuronal activity. Biol. Cybern. 35, 1–9 (1979).

    Article  CAS  Google Scholar 

  18. van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

    Article  CAS  Google Scholar 

  19. Shinomoto, S., Sakai, Y. & Funahashi, S. The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput. 11, 935–951 (1999).

    Article  CAS  Google Scholar 

  20. Salinas, E. & Sejnowski, T. J. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20, 6193–6209 (2000).

    Article  CAS  Google Scholar 

  21. Werner, G. & Mountcastle, V. B. The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. J. Neurophysiol. 26, 958–977 (1963).

    Article  CAS  Google Scholar 

  22. Gawne, T. J., Kjaer, T. W., Hertz, J. A. & Richmond, B. J. Adjacent visual cortical complex cells share about 20% of their stimulus-related information. Cerebral Cortex 6, 482–489 (1996).

    Article  CAS  Google Scholar 

  23. van Kan, P. L. E., Scobey, R. P. & Gabor, A. J. Response covariance in cat visual cortex. Exp. Brain Res. 60, 559–563 (1985).

    Article  CAS  Google Scholar 

  24. Lampl, I., Reichova, I. & Ferster, D. Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22, 361–374 (1999).

    Article  CAS  Google Scholar 

  25. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, New York, 1966).

    Google Scholar 

  26. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995).

    Article  CAS  Google Scholar 

  27. Brody, C. D. Disambiguating different covariation types. Neural Comput. 11, 1527–1535 (1999).

    Article  CAS  Google Scholar 

  28. Brody, C. D. Correlations without synchrony. Neural Comput. 11, 1537–1551 (1999).

    Article  CAS  Google Scholar 

  29. Oram, M. W., Wiener, M. C., Lestienne, R. & Richmond, B. J. Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J. Neurophysiol. 81, 3021–3033 (1999).

    Article  CAS  Google Scholar 

  30. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160–1170 (1986).

    Article  CAS  Google Scholar 

  31. Murthy, V. N. & Fetz, E. E. Effects of input synchrony on the firing rate of a three-conductance cortical neuron model. Neural Comput. 6, 1111–1126 (1994).

    Article  Google Scholar 

  32. Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1, 210–218 (1998).

    Article  CAS  Google Scholar 

  33. Usrey, W. M., Alonso, J. M. & Reid, R. C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

    Article  CAS  Google Scholar 

  34. Engel, A. K., Roelfsema, P. R., Fries, P., Brecht, M. & Singer, W. Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex 7, 571–582 (1997).

    Article  CAS  Google Scholar 

  35. Riehle, A., Grün, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1954 (1997).

    Article  CAS  Google Scholar 

  36. Di Lorenzo, P. M. & Lemon, C. H. The neural code for taste in the nucleus of the solitary tract of the rat: effects of adaptation. Brain Res. 852, 383–397 (2000).

    Article  CAS  Google Scholar 

  37. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    Article  CAS  Google Scholar 

  38. Mountcastle, V. B., Talbot, W. H., Sakata, H. & Hyvärinen, J. Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484 (1969).

    Article  CAS  Google Scholar 

  39. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780–784 (1998).

    Article  CAS  Google Scholar 

  40. Bair, W. & Koch, C. Temporal precision of spike trains in extrastriate cortex. Neural Comput. 8, 1185–1202 (1996).

    Article  CAS  Google Scholar 

  41. Teich, M. C., Heneghan, C., Lowen, S. B., Ozaki, T. & Kaplan, E. Fractal character of the neural spike train in the visual system of the cat. J. Opt. Soc. Am. A 14, 529–546 (1997).

    Article  CAS  Google Scholar 

  42. Oertel, D. The role of timing in the brain stem auditory nuclei of vertebrates. Annu. Rev. Physiol. 61, 497–519 (1999).

    Article  CAS  Google Scholar 

  43. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11, 91–101 (1998).

    Article  Google Scholar 

  44. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  Google Scholar 

  45. Salzman, C. D., Murasugi, C. M., Britten, K. H. & Newsome, W. T. Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci. 12, 2331–2355 (1992).

    Article  CAS  Google Scholar 

  46. Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl. Acad. Sci. USA 97, 6191–6196 (2000).

    Article  CAS  Google Scholar 

  47. Romo, R., Hernandez, A., Zainos, A., Brody, C. D. & Lemus, L. Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26, 273–278 (2000).

    Article  CAS  Google Scholar 

  48. Destexhe, A. & Pare, D. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999).

    Article  CAS  Google Scholar 

  49. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, 1992).

    Google Scholar 

Download references

Acknowledgements

Supported by HHMI, NIH grants RR00166 and EY11378 and the McKnight Foundation. M.E.M. was supported by an NIH training grant (GM07108), a Poncin grant and an ARCS fellowship. We thank C. Brody, J. Ditterich, J. Gold, M. Leon and M. McKinley for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Shadlen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, M., Shadlen, M. Limits to the temporal fidelity of cortical spike rate signals. Nat Neurosci 5, 463–471 (2002). https://doi.org/10.1038/nn836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing