Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

The emergence of optical elastography in biomedicine

Abstract

Optical elastography, the use of optics to characterize and map the mechanical properties of biological tissue, involves measuring the deformation of tissue in response to a load. Such measurements may be used to form an image of a mechanical property, often elastic modulus, with the resulting mechanical contrast complementary to the more familiar optical contrast. Optical elastography is experiencing new impetus in response to developments in the closely related fields of cell mechanics and medical imaging, aided by advances in photonics technology, and through probing the microscale between that of cells and whole tissues. Two techniques — optical coherence elastography and Brillouin microscopy — have recently shown particular promise for medical applications, such as in ophthalmology and oncology, and as new techniques in cell mechanics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of some emerging optical elastography techniques.
Figure 2: Compression OCE showing strain and elastic modulus imaging of excised human breast tissue.
Figure 3: Transient OCE of the eye.
Figure 4: Brillouin microscopy in cell mechanics and ophthalmology.

Similar content being viewed by others

References

  1. Cowin, S. C. & Doty, S. B. Tissue Mechanics (Springer, 2007).

    Book  Google Scholar 

  2. Janmey, P. A. & McCulloch, C. A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007).

    Article  Google Scholar 

  3. Parker, K. J., Doyley, M. M. & Rubens, D. J. Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56, R1–R29 (2011).

    Article  ADS  Google Scholar 

  4. Jaffer, O. S., Lung, P. F. C., Bosanac, D., Shah, A. & Sidhu, P. S. Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques. Ultrasound 20, 24–32 (2012).

    Article  Google Scholar 

  5. Wojcinski, S. et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med. 31, 484–491 (2010).

    Article  Google Scholar 

  6. Lee, G. Y. & Lim, C. T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118 (2007).

    Article  Google Scholar 

  7. Kennedy, B. F., Kennedy, K. M. & Sampson, D. D. A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J. Sel. Top. Quant. Electron. 20, 272–288 (2014).

    Article  ADS  Google Scholar 

  8. Wang, S. & Larin, K. V. Optical coherence elastography for tissue characterization: a review. J. Biophoton. 8, 279–302 (2015).

    Article  Google Scholar 

  9. Larin, K. V. & Sampson, D. D. Optical coherence elastography — OCT at work in tissue biomechanics. Biomed. Opt. Express 8, 1172–1202 (2017).

    Article  Google Scholar 

  10. Schmitt, J. M. OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211 (1998).

    Article  ADS  Google Scholar 

  11. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photon. 2, 39–43 (2008).

    Article  ADS  Google Scholar 

  12. Jacques, S. L. & Kirkpatrick, S. J. Acoustically modulated speckle imaging of biological tissues. Opt. Lett. 23, 879–881 (1998).

    Article  ADS  Google Scholar 

  13. Bossy, E. et al. Transient optoelastography in optically diffusive media. Appl. Phys. Lett. 90, 174111 (2007).

    Article  ADS  Google Scholar 

  14. Mohan, K. D. & Oldenburg, A. L. Elastography of soft materials and tissues by holographic imaging of surface acoustic waves. Opt. Express 20, 18887–18897 (2012).

    Article  ADS  Google Scholar 

  15. Von Gierke, H. E., Oestreicher, H. L., Franke, E. K., Parrack, H. O. & von Wittern, W. W. Physics of vibrations in living tissues. J. Appl. Physiol. 4, 886–900 (1952).

    Article  Google Scholar 

  16. Orr, J. F. & Shelton, J. C. Optical Measurement Methods in Biomechanics (Chapman & Hall, 1997).

    Google Scholar 

  17. Leitgeb, R., Hitzenberger, C. & Fercher, A. Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003).

    Article  ADS  Google Scholar 

  18. Antonacci, G. et al. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J. R. Soc. Interface 12, 20150843 (2015).

    Article  Google Scholar 

  19. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  ADS  Google Scholar 

  20. Kennedy, B. F. et al. Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue. Cancer Res. 75, 3236–3245 (2015).

    Article  Google Scholar 

  21. Allen, W. M. et al. Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins. Biomed. Opt. Express 7, 4139–4153 (2016).

    Article  Google Scholar 

  22. Kennedy, B. F., Malheiro, F. G., Chin, L. & Sampson, D. D. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans. J. Biomed. Opt. 19, 076006 (2014).

    Article  ADS  Google Scholar 

  23. Kennedy, K. M. et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography. Sci. Rep. 5, 15538 (2015).

    Article  ADS  Google Scholar 

  24. Qi, W. et al. Resonant acoustic radiation force optical coherence elastography. Appl. Phys. Lett. 103, 103704 (2013).

    Article  ADS  Google Scholar 

  25. Akca, B. I. et al. Observation of sound-induced corneal vibrational modes by optical coherence tomography. Biomed. Opt. Express 6, 3313–3319 (2015).

    Article  Google Scholar 

  26. Adie, S. G. et al. Spectroscopic optical coherence elastography. Opt. Express 18, 25519–25534 (2010).

    Article  ADS  Google Scholar 

  27. Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., Fowlkes, J. B. & Emelianov, S. Y. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol. 24, 1419–1435 (1998).

    Article  Google Scholar 

  28. Wang, S. & Larin, K. V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 5, 3807–3821 (2014).

    Article  Google Scholar 

  29. Song, S., Le, N. H., Huang, Z., Shen, T. & Wang, R. K. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source. Opt. Lett. 40, 5007–5010 (2015).

    Article  ADS  Google Scholar 

  30. Li, C., Guan, G., Cheng, X., Huang, Z. & Wang, R. K. Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 37, 722–724 (2012).

    Article  ADS  Google Scholar 

  31. Singh, M. et al. Phase-sensitive optical coherence elastography at 1.5 million A-lines per second. Opt. Lett. 40, 2588–2591 (2015).

    Article  ADS  Google Scholar 

  32. Leroux, C.-E., Palmier, J., Boccara, A. C., Cappello, G. & Monnier, S. Elastography of multicellular aggregates submitted to osmo-mechanical stress. N. J. Phys. 17, 073035 (2015).

    Article  Google Scholar 

  33. Nahas, A., Bauer, M., Roux, S. & Boccara, A. C. 3D static elastography at the micrometer scale using full field OCT. Biomed. Opt. Express 4, 2138–2149 (2013).

    Article  Google Scholar 

  34. Zaitsev, V. Y., Matveev, L. A., Matveyev, A. L., Gelikonov, G. V. & Gelikonov, V. M. Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability. J. Biomed. Opt. 19, 021107 (2014).

    Article  ADS  Google Scholar 

  35. Wang, R. K., Ma, Z. & Kirkpatrick, S. J. Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue. Appl. Phys. Lett. 89, 144103 (2006).

    Article  ADS  Google Scholar 

  36. Kennedy, B. F. et al. Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure. Biomed. Opt. Express 5, 2113–2124 (2014).

    Article  Google Scholar 

  37. Bouwens, A. et al. Quantitative lateral and axial flow imaging with optical coherence microscopy and tomography. Opt. Express 21, 17711–17729 (2013).

    Article  ADS  Google Scholar 

  38. Antonacci, G., Foreman, M. R., Paterson, C. & Torok, P. Spectral broadening in Brillouin imaging. Appl. Phys. Lett. 103, 221105 (2013).

    Article  ADS  Google Scholar 

  39. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1136 (2015).

    Article  Google Scholar 

  40. Scarcelli, G., Kim, P. & Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys. J. 101, 1539–1545 (2011).

    Article  ADS  Google Scholar 

  41. Scarcelli, G. et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest. Ophthalmol. Vis. Sci. 54, 1418–1425 (2013).

    Article  Google Scholar 

  42. Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    Article  Google Scholar 

  43. Ballmann, C. W. et al. Stimulated Brillouin scattering microscopic imaging. Sci. Rep. 5, 18139 (2015).

    Article  ADS  Google Scholar 

  44. Li, C. et al. Detection and characterisation of biopsy tissue using quantitative optical coherence elastography (OCE) in men with suspected prostate cancer. Cancer Lett. 357, 121–128 (2015).

    Article  Google Scholar 

  45. Liang, X., Oldenburg, A. L., Crecea, V., Chaney, E. J. & Boppart, S. A. Optical micro-scale mapping of dynamic biomechanical tissue properties. Opt. Express 16, 11052–11065 (2008).

    Article  ADS  Google Scholar 

  46. Ford, M. R., Roy, A. S., Rollins, A. M. & Dupps, W. J. Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography. J. Cataract Refr. Surg. 40, 1041–1047 (2014).

    Article  Google Scholar 

  47. Curatolo, A. et al. Ultrahigh resolution optical coherence elastography. Opt. Lett. 41, 21–24 (2015).

    Article  ADS  Google Scholar 

  48. Crecea, V., Graf, B. W., Taewoo, K., Popescu, G. & Boppart, S. A. High resolution phase-sensitive magnetomotive optical coherence microscopy for tracking magnetic microbeads and cellular mechanics. IEEE J. Sel. Top. Quant. Electron. 20, 6800907 (2014).

    Article  Google Scholar 

  49. Hajjarian, Z. & Nadkarni, S. K. Evaluating the viscoelastic properties of tissue from laser speckle flucuations. Sci. Rep. 2, 1–8 (2012).

    Article  Google Scholar 

  50. Kennedy, K. M., Kennedy, B. F., McLaughlin, R. A. & Sampson, D. D. Needle optical coherence elastography for tissue boundary detection. Opt. Lett. 37, 2310–2312 (2012).

    Article  ADS  Google Scholar 

  51. Dong, L. et al. Quantitative compression optical coherence elastography as an inverse elasticity problem. IEEE J. Sel. Top. Quant. Electron. 22, 6802211 (2016).

    Google Scholar 

  52. Mulligan, J. A., Untracht, G. R., Chandrasekaran, S. N., Brown, C. N. & Adie, S. G. Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography. IEEE J. Sel. Top. Quant. Electron. 22, 6800520 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues past and present who have contributed to the evolution of optical elastography; in particular, S. Adie, W. Allen, L. Chin, B. Quirk, A. Curatolo, S. Es'hagian, K. Kennedy, R. Kirk, R. McLaughlin and P. Munro. This work has been supported in part by the Australian Research Council, the National Health and Medical Research Council, the National Breast Cancer Foundation, and the Western Australian Department of Health. P.W. thanks the Schrader Trust for a studentship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brendan F. Kennedy or David D. Sampson.

Ethics declarations

Competing interests

OncoRes Medical Pty Ltd has recently been established to develop optical elastography for applications in breast-conserving surgery. B.F.K. and D.D.S. have shares in OncoRes Medical and in future B.F.K. will be undertaking funded research for this company.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, B., Wijesinghe, P. & Sampson, D. The emergence of optical elastography in biomedicine. Nature Photon 11, 215–221 (2017). https://doi.org/10.1038/nphoton.2017.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing