Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range mutual synchronization of spin Hall nano-oscillators

Abstract

The spin Hall effect in a non-magnetic metal with spin–orbit coupling injects transverse spin currents into adjacent magnetic layers, where the resulting spin transfer torque can drive spin wave auto-oscillations. Such spin Hall nano-oscillators (SHNOs) hold great promise as extremely compact and broadband microwave signal generators and magnonic spin wave injectors. Here we show that SHNOs can also be mutually synchronized with unprecedented efficiency. We demonstrate mutual synchronization of up to nine individual SHNOs, each separated by 300 nm. Through further tailoring of the connection regions we can extend the synchronization range to 4 μm. The mutual synchronization is observed electrically as an increase in the power and coherence of the microwave signal, and confirmed optically using micro-Brillouin light scattering microscopy as two spin wave regions sharing the same spectral content, in agreement with our micromagnetic simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device schematic, current distribution, and static measurements.
Figure 6: Multiple SHNO synchronization.
Figure 2: Electrical microwave characterization.
Figure 3: Micromagnetic simulations.
Figure 4: μ-BLS measurements.
Figure 5: Long-range synchronization.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    ADS  Google Scholar 

  3. Ralph, D. & Stiles, M. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    ADS  Google Scholar 

  4. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nat. Mater. 9, 984–988 (2010).

    ADS  Google Scholar 

  5. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nat. Nanotech. 6, 635–638 (2011).

    ADS  Google Scholar 

  6. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).

    ADS  Google Scholar 

  7. Rippard, W., Pufall, M., Kaka, S., Russek, S. & Silva, T. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    ADS  Google Scholar 

  8. Silva, T. & Rippard, W. Developments in nano-oscillators based upon spin-transfer point-contact devices. J. Magn. Magn. Mater. 320, 1260–1271 (2008).

    ADS  Google Scholar 

  9. Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).

    ADS  Google Scholar 

  10. Bonetti, S. et al. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010).

    ADS  Google Scholar 

  11. Bonetti, S. & Åkerman, J. Nano-contact spin-torque oscillators as magnonic building blocks. Top. Appl. Phys. 125, 177–187 (2013).

    Google Scholar 

  12. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nat. Nanotech. 9, 509–513 (2014).

    ADS  Google Scholar 

  13. Dumas, R. et al. Recent advances in nanocontact spin-torque oscillators. IEEE Trans. Magn. 50, 4100107 (2014).

    Google Scholar 

  14. Slonczewski, J. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, 261–268 (1999).

    ADS  Google Scholar 

  15. Kalinikos, B. A. & Slavin, A. N. Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions. J. Phys. C 19, 7013–7033 (1986).

    ADS  Google Scholar 

  16. Hoefer, M., Silva, T. & Stiles, M. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact. Phys. Rev. B 77, 144401 (2008).

    ADS  Google Scholar 

  17. Dumas, R. K. et al. Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. Phys. Rev. Lett. 110, 257202 (2013).

    ADS  Google Scholar 

  18. Madami, M. et al. Propagating spin waves excited by spin-transfer torque: a combined electrical and optical study. Phys. Rev. B 92, 024403 (2015).

    ADS  Google Scholar 

  19. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    ADS  Google Scholar 

  20. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    ADS  Google Scholar 

  21. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    ADS  Google Scholar 

  22. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    ADS  Google Scholar 

  23. Liu, R. H., Lim, W. L. & Urazhdin, S. Spectral characteristics of the microwave emission by the spin Hall nano-oscillator. Phys. Rev. Lett. 110, 147601 (2013).

    ADS  Google Scholar 

  24. Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).

    ADS  Google Scholar 

  25. Demidov, V. E., Urazhdin, S., Zholud, A., Sadovnikov, A. V. & Demokritov, S. O. Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105, 172410 (2014).

    ADS  Google Scholar 

  26. Ranjbar, M. et al. CoFeB-based spin Hall nano-oscillators. IEEE Magn. Lett. 5, 3000504 (2014).

    Google Scholar 

  27. Langenfeld, S. et al. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators. Appl. Phys. Lett. 108, 192402 (2016).

    ADS  Google Scholar 

  28. Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).

    ADS  Google Scholar 

  29. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    ADS  Google Scholar 

  30. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    ADS  Google Scholar 

  31. Pufall, M., Rippard, W., Russek, S., Kaka, S. & Katine, J. Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. Phys. Rev. Lett. 97, 087206 (2006).

    ADS  Google Scholar 

  32. Sani, S. et al. Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators. Nat. Commun. 4, 2731 (2013).

    ADS  Google Scholar 

  33. Houshang, A. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotech. 11, 280–286 (2016).

    ADS  Google Scholar 

  34. Demidov, V. E. et al. Synchronization of spin Hall nano-oscillators to external microwave signals. Nat. Commun. 5, 3179 (2014).

    ADS  Google Scholar 

  35. Kendziorczyk, T. & Kuhn, T. Mutual synchronization of nanoconstriction-based spin Hall nano-oscillators through evanescent and propagating spin waves. Phys. Rev. B 93, 134413 (2016).

    ADS  Google Scholar 

  36. Slavin, A. N. & Kabos, P. Approximate theory of microwave generation in a current-driven magnetic nanocontact magnetized in an arbitrary direction. IEEE Trans. Magn. 41, 1264–1273 (2005).

    ADS  Google Scholar 

  37. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet.. Phys. Rev. Lett. 95, 237201 (2005).

    ADS  Google Scholar 

  38. Consolo, G., Lopez-Diaz, L., Torres, L. & Azzerboni, B. Magnetization dynamics in nanocontact current controlled oscillators. Phys. Rev. B 75, 214428 (2007).

    ADS  Google Scholar 

  39. Houssameddine, D. et al. Temporal coherence of MgO based magnetic tunnel junction spin torque oscillators. Phys. Rev. Lett. 102, 257202 (2009).

    ADS  Google Scholar 

  40. Devolder, T. et al. Auto-oscillation and narrow spectral lines in spin-torque oscillators based on MgO magnetic tunnel junctions. J. Appl. Phys. 106, 103921 (2009).

    ADS  Google Scholar 

  41. Keller, M., Pufall, M., Rippard, W. & Silva, T. Nonwhite frequency noise in spin torque oscillators and its effect on spectral linewidth. Phys. Rev. B 82, 054416 (2010).

    ADS  Google Scholar 

  42. Eklund, A. et al. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field. Appl. Phys. Lett. 104, 092405 (2014).

    ADS  Google Scholar 

  43. Yang, L. et al. Reduction of phase noise in nanowire spin orbit torque oscillators. Sci. Rep. 5, 16942 (2015).

    ADS  Google Scholar 

  44. Demidov, V. E., Urazhdin, S., Rinkevich, A. B., Reiss, G. & Demokritov, S. O. Spin Hall controlled magnonic microwaveguides. Appl. Phys. Lett. 104, 152402 (2014).

    ADS  Google Scholar 

  45. An, K. et al. Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide. Phys. Rev. B 89, 140405 (2014).

    ADS  Google Scholar 

  46. Evelt, M. et al. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Appl. Phys. Lett. 108, 172406 (2016).

    ADS  Google Scholar 

  47. Kim, J.-V., Tiberkevich, V. & Slavin, A. Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. Phys. Rev. Lett. 100, 017207 (2008).

    ADS  Google Scholar 

  48. Tiberkevich, V. S., Slavin, A. N. & Kim, J.-V. Temperature dependence of nonlinear auto-oscillator linewidths: application to spin-torque nano-oscillators. Phys. Rev. B 78, 092401 (2008).

    ADS  Google Scholar 

  49. Maehara, H. et al. Large emission power over 2 μW with high Q factor obtained from nanocontact magnetic-tunnel-junction-based spin torque oscillator. Appl. Phys. Exp. 6, 113005 (2013).

    ADS  Google Scholar 

  50. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Google Scholar 

  51. Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

    ADS  Google Scholar 

  52. Khitun, A. & Wang, K. L. Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011).

    ADS  Google Scholar 

  53. Macià, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).

    ADS  Google Scholar 

  54. Klingler, S. et al. Design of a spin-wave majority gate. Appl. Phys. Lett. 105, 152410 (2014).

    ADS  Google Scholar 

  55. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–118 (2011).

    Google Scholar 

  56. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11–20 (2013).

    ADS  Google Scholar 

  57. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    ADS  Google Scholar 

  58. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Madami for assistance in building the μ-BLS microscope. This work was supported by the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP/2007-2013)/ERC Grant 307144 ‘MUSTANG’. This work was also supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

A.A.A. designed the devices. P.D. and A.H. fabricated the devices. A.A.A., P.D. and A.H. performed all electrical measurements. R.K.D. and A.A.A. built the μ-BLS microscope. A.A.A. carried out all optical measurements. A.A.A. and M.D. performed the micromagnetic simulations. All authors contributed to the data analysis and co-wrote the manuscript.

Corresponding author

Correspondence to J. Åkerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awad, A., Dürrenfeld, P., Houshang, A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nature Phys 13, 292–299 (2017). https://doi.org/10.1038/nphys3927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing