Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing

Abstract

It remains unclear how post-transcriptional gene silencing (PTGS) in plants discriminates aberrant RNAs from canonical messenger RNAs (mRNAs). The key step of plant PTGS is the conversion of aberrant RNAs into double-stranded RNAs by RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Here, we show that RDR6 itself selects aberrant poly(A)-less mRNAs over canonical polyadenylated mRNAs as templates at the initiation step of complementary strand synthesis. This mechanism can be viewed as an innate safeguard against ‘self-attack’ by PTGS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AtRDR6 has an intrinsic preference for poly(A)-less mRNAs over polyadenylated mRNAs as templates.
Figure 2: Poly(A) tail inhibits the initiation step of complementary strand synthesis by AtRDR6.

Similar content being viewed by others

References

  1. Napoli, C., Lemieux, C. & Jorgensen, R. Plant Cell 2, 279–289 (1990).

    Article  CAS  Google Scholar 

  2. Ratcliff, F., Harrison, B. D. & Baulcombe, D. C. Science 276, 1558–1560 (1997).

    Article  CAS  Google Scholar 

  3. Borges, F. & Martienssen, R. A. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    Article  CAS  Google Scholar 

  4. Fire, A. et al. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  5. Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. Cell 101, 543–553 (2000).

    Article  CAS  Google Scholar 

  6. Mourrain, P. et al. Cell 101, 533–542 (2000).

    Article  CAS  Google Scholar 

  7. Branscheid, A. et al. Nucleic Acids Res. 43, 10975–10988 (2015).

    Article  CAS  Google Scholar 

  8. Martinez de Alba, A. E. et al. Nucleic Acids Res. 43, 2902–2913 (2015).

    Article  CAS  Google Scholar 

  9. Zhang, X. et al. Science 348, 120–123 (2015).

    Article  CAS  Google Scholar 

  10. Gazzani, S., Lawrenson, T., Woodward, C., Headon, D. & Sablowski, R. Science 306, 1046–1048 (2004).

    Article  CAS  Google Scholar 

  11. Luo, Z. & Chen, Z. Plant Cell 19, 943–958 (2007).

    Article  CAS  Google Scholar 

  12. Curaba, J. & Chen, X. J. Biol. Chem. 283, 3059–3066 (2008).

    Article  CAS  Google Scholar 

  13. Rajeswaran, R. et al. Nucleic Acids Res. 40, 6241–6254 (2012).

    Article  CAS  Google Scholar 

  14. Kumakura, N. et al. FEBS Lett. 583, 1261–1266 (2009).

    Article  CAS  Google Scholar 

  15. Fei, Q., Xia, R. & Meyers, B. C. Plant Cell 25, 2400–2415 (2013).

    Article  CAS  Google Scholar 

  16. Yoshikawa, M., Peragine, A., Park, M. Y. & Poethig, R. S. Genes Dev. 19, 2164–2175 (2005).

    Article  CAS  Google Scholar 

  17. Allen, E., Xie, Z., Gustafson, A. M. & Carrington, J. C. Cell 121, 207–221 (2005).

    Article  CAS  Google Scholar 

  18. Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. Cell 127, 565–577 (2006).

    Article  CAS  Google Scholar 

  19. Montgomery, T. A. et al. Cell 133, 128–141 (2008).

    Article  CAS  Google Scholar 

  20. Arribas-Hernandez, L. et al. Plant Cell 28, 1563–1580 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of Tomari laboratory for discussion and technical support. This work was supported in part by Grants-in-Aid for Scientific Research on Innovative Areas (‘Non-coding RNA neo-taxonomy’) 26113007 (to Y.T.) and (‘Nascent-chain Biology’) 26116003 (to H.I), Grant-in-Aid for Young Scientists (A) 16H06159 (to H.I.), Grant-in-Aid for Challenging Exploratory Research 15K14444 (to H.I.) and Grant-in-Aid for JSPS Fellows 16J07290 (to K.B.).

Author information

Authors and Affiliations

Authors

Contributions

K.B. performed all experiments. H.I. and Y.T. supervised the project. K.B., H.I. and Y.T. wrote the manuscript.

Corresponding authors

Correspondence to Hiro-oki Iwakawa or Yukihide Tomari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1-4, Supplementary Methods, Supplementary References, Supplementary Table 1. (PDF 728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baeg, K., Iwakawa, Ho. & Tomari, Y. The poly(A) tail blocks RDR6 from converting self mRNAs into substrates for gene silencing. Nature Plants 3, 17036 (2017). https://doi.org/10.1038/nplants.2017.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2017.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing