Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions

Abstract

A substantial range of protein-protein interactions can be readily monitored in real time using bioluminescence resonance energy transfer (BRET). The procedure involves heterologous coexpression of fusion proteins, which link proteins of interest to a bioluminescent donor enzyme or acceptor fluorophore. Energy transfer between these proteins is then detected. This protocol encompasses BRET1, BRET2 and the recently described eBRET, including selection of the donor, acceptor and substrate combination, fusion construct generation and validation, cell culture, fluorescence and luminescence detection, BRET detection and data analysis. The protocol is particularly suited to studying protein-protein interactions in live cells (adherent or in suspension), but cell extracts and purified proteins can also be used. Furthermore, although the procedure is illustrated with references to mammalian cell culture conditions, this protocol can be readily used for bacterial or plant studies. Once fusion proteins are generated and validated, the procedure typically takes 48–72 h depending on cell culture requirements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An illustration of the BRET protocol using a microplate luminometer.
Figure 2: Examples of theoretical BRET data from ligand (reagent) modulated interactions.

Similar content being viewed by others

References

  1. Pfleger, K.D. & Eidne, K.A. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat. Methods 3, 165–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Milligan, G. & Bouvier, M. Methods to monitor the quaternary structure of G-protein–coupled receptors. FEBS J. 272, 2914–2925 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Boute, N., Jockers, R. & Issad, T. The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol. Sci. 23, 351–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Pfleger, K.D.G. & Eidne, K.A. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary 6, 141–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Piston, D.W. & Johnson, C.H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Subramanian, C. et al. The Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 101, 6798–6802 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).

    CAS  PubMed  Google Scholar 

  9. Kroeger, K.M., Hanyaloglu, A.C., Seeber, R.M., Miles, L.E. & Eidne, K.A. Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. 276, 12736–12743 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pfleger, K.D.G. & Eidne, K.A. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem. J. 385, 625–637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scaffidi, A.K. et al. α(v)β(3) Integrin interacts with the transforming growth factor β (TGFβ) type II receptor to potentiate the proliferative effects of TGFβ1 in living human lung fibroblasts. J. Biol. Chem. 279, 37726–37733 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, R.J. et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat. Struct. Mol. Biol. 12, 814–821 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Michelini, E., Mirasoli, M., Karp, M., Virta, M. & Roda, A. Development of a bioluminescence resonance energy-transfer assay for estrogen-like compound in vivo monitoring. Anal. Chem. 76, 7069–7076 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Garside, H. et al. Glucocorticoid ligands specify different interactions with NF-kappaB by allosteric effects on the glucocorticoid receptor DNA binding domain. J. Biol. Chem. 279, 50050–50059 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. de Virgilio, M., Kiosses, W.B. & Shattil, S.J. Proximal, selective, and dynamic interactions between integrin alphaIIbbeta3 and protein tyrosine kinases in living cells. J. Cell. Biol. 165, 305–311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yung, T.M., Sato, S. & Satoh, M.S. Poly(ADP-ribosyl)ation as a DNA damage-induced post-translational modification regulating poly(ADP-ribose) polymerase-1-topoisomerase I interaction. J. Biol. Chem. 279, 39686–39696 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Trevaskis, J. et al. Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1, a novel neuronal protein that regulates energy balance. Endocrinology 146, 3757–3764 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Germain-Desprez, D., Bazinet, M., Bouvier, M. & Aubry, M. Oligomerization of transcriptional intermediary factor 1 regulators and interaction with ZNF74 nuclear matrix protein revealed by bioluminescence resonance energy transfer in living cells. J. Biol. Chem. 278, 22367–22373 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Terrillon, S. et al. Oxytocin and vasopressin V1a and V2 receptors from constitutive homo- and heterodimers during biosynthesis. Mol. Endocrinol. 17, 677–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Mercier, J.F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of β1- and β2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Ayoub, M.A. et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 21522–21528 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hamdan, F.F., Audet, M., Garneau, P., Pelletier, J. & Bouvier, M. High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1–based β-arrestin2 recruitment assay. J. Biomol. Screen. 10, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Pfleger, K.D. et al. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell. Signal; Advance online publication 21 February 2006 (doi: 10.1016/j.cellsig.2006.01.004).

    Article  CAS  PubMed  Google Scholar 

  24. De, A. & Gambhir, S.S. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J. 19, 2017–2019 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D G Pfleger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfleger, K., Seeber, R. & Eidne, K. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1, 337–345 (2006). https://doi.org/10.1038/nprot.2006.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.52

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing