Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry

Abstract

We present a high-throughput approach to study weak protein–protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein–protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the bimolecular fluorescent complementation (BiFC) assay.
Figure 2: Protein fusion vectors.
Figure 3: Effects of mutations at the interaction interface on bimolecular fluorescent complementation signal.
Figure 4: Gating for flow cytometry analysis and cell sorting of yellow fluorescent protein (YFP)-expressing Escherichia coli.
Figure 5: Histogram of yellow fluorescent protein (YFP)-expressing Escherichia coli.
Figure 6: Coupling bimolecular fluorescent complementation to flow cytometry for the analysis and discrimination of transient binders.
Figure 7: Cell sorting experiments.

Similar content being viewed by others

References

  1. Kerppola, T.K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1, 1278–1286 (2006).

    Article  Google Scholar 

  2. Magliery, T.J. & Regan, L. Reassembled GFP: detecting protein-protein interactions and protein expression patterns. Methods Biochem. Anal. 47, 391–405 (2006).

    PubMed  Google Scholar 

  3. Zhu, L. et al. Inhibition of Mist1 homodimer formation induces pancreatic acinar-to-ductal metaplasia. Mol. Cell. Biol. 24, 2673–2681 (2004).

    Article  CAS  Google Scholar 

  4. Nyfeler, B., Michnick, S.W. & Hauri, H.P. Capturing protein interactions in the secretory pathway of living cells. Proc. Natl. Acad. Sci. USA 102, 6350–6355 (2005).

    Article  CAS  Google Scholar 

  5. Fang, D. & Kerppola, T.K. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc. Natl. Acad. Sci. USA 101, 14782–14787 (2004).

    Article  CAS  Google Scholar 

  6. Hu, C.D. & Kerppola, T.K. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539–545 (2003).

    Article  CAS  Google Scholar 

  7. Walter, M. et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438 (2004).

    Article  CAS  Google Scholar 

  8. Cole, K.C., McLaughlin, H.W. & Johnson, D.I. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae. Eukaryot. Cell 6, 378–387 (2007).

    Article  CAS  Google Scholar 

  9. Morell, M., Espargaro, A., Aviles, F.X. & Ventura, S. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics 7, 1023–1036 (2007).

    Article  CAS  Google Scholar 

  10. Hoff, B. & Kuck, U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr. Genet. 47, 132–138 (2005).

    Article  CAS  Google Scholar 

  11. MacDonald, M.L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol. 2, 329–337 (2006).

    Article  CAS  Google Scholar 

  12. Magliery, T.J. et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J. Am. Chem. Soc. 127, 146–157 (2005).

    Article  CAS  Google Scholar 

  13. Brehm-Stecher, B.F. & Johnson, E.A. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68, 538–559 (2004).

    Article  CAS  Google Scholar 

  14. Davey, H.M. & Winson, M.K. Using flow cytometry to quantify microbial heterogeneity. Curr. Issues Mol. Biol. 5, 9–15 (2003).

    PubMed  Google Scholar 

  15. Wouters, F.S., Verveer, P.J. & Bastiaens, P.I. Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–211 (2001).

    Article  CAS  Google Scholar 

  16. Gingras, A.C., Gstaiger, M., Raught, B. & Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645–654 (2007).

    Article  CAS  Google Scholar 

  17. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  Google Scholar 

  18. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  19. He, L., Wu, X., Simone, J., Hewgill, D. & Lipsky, P.E. Determination of tumor necrosis factor receptor-associated factor trimerization in living cells by CFP->YFP->mRFP FRET detected by flow cytometry. Nucleic Acids Res. 33, e61 (2005).

    Article  Google Scholar 

  20. Wilson, C.G., Magliery, T.J. & Regan, L. Detecting protein-protein interactions with GFP-fragment reassembly. Nat. Methods 1, 255–262 (2004).

    Article  CAS  Google Scholar 

  21. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  Google Scholar 

  22. Shyu, Y.J., Liu, H., Deng, X. & Hu, C.D. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40, 61–66 (2006).

    Article  CAS  Google Scholar 

  23. Harkins, K. Sorting of Bacteria Vol. 11.4.1 (John Wiley & Sons, New York, 1999).

    Google Scholar 

  24. Perfetto, S.P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. & Roederer, M. Quality assurance for polychromatic flow cytometry. Nat. Protoc. 1, 1522–1530 (2006).

    Article  CAS  Google Scholar 

  25. Sambrook, R. & Russell, D.W. Molecular Cloning: A Laboratory Manual Vol. 1 (Cold Spring Harbor, New York, 2001).

    Google Scholar 

  26. Gallagher, S., Winston, S.E., Fuller, S.A. & Hurrell, J.G.R. Current Protocols in Molecular Biology 10.8.1–10.8.21 Vol. 2 (John Wiley & Sons, New York, 1999).

    Google Scholar 

  27. Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).

    Article  CAS  Google Scholar 

  28. Cohen, S.N., Chang, A.C. & Hsu, L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110–2114 (1972).

    Article  CAS  Google Scholar 

  29. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  30. Lehtinen, J., Nuutila, J. & Lilius, E.M. Green fluorescent protein-propidium iodide (GFP-PI) based assay for flow cytometric measurement of bacterial viability. Cytometry A 60, 165–172 (2004).

    Article  Google Scholar 

  31. Sattler, M. et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3 kinase pathway. Oncogene 12, 839–846 (1996).

    CAS  PubMed  Google Scholar 

  32. Pisabarro, M.T., Serrano, L. & Wilmanns, M. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. J. Mol. Biol. 281, 513–521 (1998).

    Article  CAS  Google Scholar 

  33. Van Etten, R.A., Debnath, J., Zhou, H. & Casasnovas, J.M. Introduction of a loss-of-function point mutation from the SH3 region of the Caenorhabditis elegans sem-5 gene activates the transforming ability of c-abl in vivo and abolishes binding of proline-rich ligands in vitro. Oncogene 10, 1977–1988 (1995).

    CAS  PubMed  Google Scholar 

  34. Jach, G., Pesch, M., Richter, K., Frings, S. & Uhrig, J.F. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3, 597–600 (2006).

    Article  CAS  Google Scholar 

  35. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  36. Anderie, I. & Schmid, A. In vivo visualization of actin dynamics and actin interactions by BiFC. Cell. Biol. Int. 31, 1131–1135 (2007).

    Article  CAS  Google Scholar 

  37. Granneman, J.G. et al. Analysis of lipolytic protein trafficking and interactions in adipocytes. J. Biol. Chem. 282, 5726–5735 (2007).

    Article  CAS  Google Scholar 

  38. Ghosh, I. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  39. Chen, B., Liu, Q., Ge, Q., Xie, J. & Wang, Z.W. UNC-1 regulates gap junctions important to locomotion in C. elegans. Curr. Biol. 17, 1334–1339 (2007).

    Article  CAS  Google Scholar 

  40. Fang, Y. & Spector, D.L. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–823 (2007).

    Article  CAS  Google Scholar 

  41. Zamyatnin, A.A. Jr. et al. Assessment of the integral membrane protein topology in living cells. Plant J. 46, 145–154 (2006).

    Article  CAS  Google Scholar 

  42. Weltmeier, F. et al. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J. 25, 3133–3143 (2006).

    Article  CAS  Google Scholar 

  43. Sung, M.K. & Huh, W.K. Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast 24, 767–775 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Manuela Costa and Jaume Comas for technical assistance in the FC technique. This work has been supported by grants GEN2003-20642 and BIO2004-05879 (MEC, Spain), by LSHG.2006-018830-CAMP (EC-Dir. F), and by CeRBA and SGR00037 (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, M., Espargaro, A., Aviles, F. et al. Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 3, 22–33 (2008). https://doi.org/10.1038/nprot.2007.496

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.496

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing