Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates

Abstract

In the past few decades, marine natural products bioprospecting has yielded a considerable number of drug candidates. Two marine natural products have recently been admitted as new drugs: Prialt (also known as ziconotide) as a potent analgesic for severe chronic pain and Yondelis (known also as trabectedin or E-743) as antitumor agent for the treatment of advanced soft tissue sarcoma. In this protocol, methods for bioactivity-guided isolation, purification and identification of secondary metabolites from marine invertebrates such as sponges, tunicates, soft corals and crinoids are discussed. To achieve this goal, solvent extraction of usually freeze-dried sample of marine organisms is performed. Next, the extract obtained is fractionated by liquid–liquid partitioning followed by various chromatographic separation techniques including thin layer chromatography, vacuum liquid chromatography, column chromatography (CC) and preparative high-performance reversed-phase liquid chromatography. Isolation of bioactive secondary metabolites is usually monitored by bioactivity assays, e.g., antioxidant (2,2-diphenyl-1-picryl hydrazyl) and cytotoxicity (microculture tetrazolium) activities that ultimately yield the active principles. Special care should be taken when performing isolation procedures adapted to the physical and chemical characteristics of the compounds isolated, particularly their lipo- or hydrophilic characters. Examples of isolation of compounds of different polarities from extracts of various marine invertebrates will be presented in this protocol. Structure elucidation is achieved using recent spectroscopic techniques, especially 2D NMR and mass spectrometry analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8: HPLC chromatograms of the total EtOAc fraction and of purified 1′-deoxyrhodoptilometrin and rhodoptilometrin from the crinoid Comanthus sp.
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Schupp, P., Eder, C., Paul, V. & Proksch, P. Distribution of secondary metabolites in the sponge Oceanapia sp. and its ecological implications. Marine Biol. 135, 573–580 (1999).

    Article  CAS  Google Scholar 

  2. Epifanio, R.D.A., Martins, D.L., Villaça, R. & Gabriel, R. Chemical defenses against fish predation in three Brazilian octocorals: 11β,12β-epoxypukalide as a feeding deterrent in Phyllogorgia dilatata. J. Chem. Ecol. 25, 2255–2265 (1999).

    Article  CAS  Google Scholar 

  3. Epifanio, R.D.A., Gabriel, R., Martins, D.L. & Muricy, G. The sesterterpene variabilin as a fish-predation deterrent in the western Atlantic sponge Ircinia strobilina. J. Chem. Ecol. 25, 2247–2254 (1999).

    Article  CAS  Google Scholar 

  4. Kicklighter, C.E., Kubanek, J. & Hay, M.E. Do brominated natural products defend marine worms from consumers? Some do, most don't. Limnol. Oceanorg. 49, 430–441 (2004).

    Article  CAS  Google Scholar 

  5. Bhakuni, D.S. & Rawat, D.S. Bioactive Marine Natural Products, 26–77 (Springer-Anamaya, New York, New Delhi, 2005).

    Google Scholar 

  6. Proksch, P., Edrada, R.A. & Ebel, R. Drugs from the seas—current status and microbiological implications. Appl. Microbiol. Biotechnol. 59, 125–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Newman, D.J., Cragg, G.M. & Sander, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215–234 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. König, G.M. & Wright, A.D. Marine natural products research: current directions and future potential. Planta Medica 62, 193–211 (1996).

    Article  PubMed  Google Scholar 

  9. Claeson, P. & Bohlin, L. Some aspects of bioassay methods in natural-product research aimed at drug lead discovery. Trends. Biotech. 15, 245–246 (1997).

    Article  CAS  Google Scholar 

  10. Pawlik, J.R. Marine invertebrate chemical defenses. Chem. Rev. 93, 1911–1922 (1993).

    Article  CAS  Google Scholar 

  11. Huang, X., Deng, Z., Zhu, X., van Ofwegen, L., Proksch, P. & Lin, W. Krempenes A–D: a series of unprecedented pregnane-type steroids from the marine soft coral Cladiella krempfi. Helv. Chim. Act. 89, 2020–2026 (2006).

    Article  CAS  Google Scholar 

  12. Lee, N.K. & Kim, Y.H. New cytotoxic anthraquinones from the crinoid Ptilometra: 1′-deoxyrhodoptilometrin-6-O-sulfate and rhodoptilometrin-6-O-sulfate. Bull. Kor. Chem. Soc. 16, 1011–1013 (1995).

    CAS  Google Scholar 

  13. Ibrahim, S.R.M., Edrada-Ebel, R.A., Mohamed, G.A., Youssef, D.T.A., Wray, V. & Proksch, P. Callyaerin G, a new cytotoxic cyclic peptide from the marine sponge Callyspongia aerizusa. ARKIVOC XII, 164–171 (2008).

    Google Scholar 

  14. Pedpradab, S., Edrada, R.A., Ebel, R., Wray, V. & Proksch, P. New β-carboline alkaloids from the Andaman sea sponge Dragmacidon sp. J. Nat. Prod. 67, 2113–2116 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Schupp, P. et al. Eudistomins W and X, two new β-carbolines from the Micronesian tunicate Eudistoma sp. J. Nat. Prod. 66, 272–275 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Schupp, P., Proksch, P. & Wray, V. Further new staurosporine derivatives from the ascidian Eudistoma toealensis and its predatory flatworm Pseudoceros sp. J. Nat. Prod. 65, 295–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hassan, W. et al. New imidazole alkaloids from the Indonesian sponge Leucetta chagosensis. J. Nat. Prod. 67, 817–822 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Fouad, M. et al. New steroidal saponins from the sponge Erylus lendenfeldi. ARKIVOC XIII, 17–27 (2004).

    Google Scholar 

  19. Shimizu, Y. Purification of water-soluble natural products. In Natural Products Isolation (ed. Cannell, J.P.) 329–342 (Humana Press, Totowa, New Jersey, USA, 1998).

    Chapter  Google Scholar 

  20. Shimizu, Y. Bioactive marine natural products, with emphasis on handling of water-soluble compounds. J. Nat. Prod. 48, 223–235 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Wright, A.E. Isolation of marine natural products. In Natural Products Isolation (ed. Cannell, J.P.) 329–342 (Humana Press, Totowa, New Jersey, USA, 1998).

    Google Scholar 

  22. Mc Alpine, J.B. & Hochlowski, J.E. Isolation and purification of secondary metabolites. In The Discovery of Natural Products with Therapeutic Potential (ed. Gullo, V.P.) 349–388 (Butterworth-Heinemann, Boston, 1994).

    Chapter  Google Scholar 

  23. Quinn, R.J. Chemistry of aqueous marine extracts: Isolation techniques. In Bioorganic Marine Chemistry Vol. 2 (ed. Scheuer, P.J.) 1 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).

    Google Scholar 

  24. Riguera, R. Isolating bioactive compounds from marine organisms. J. Marine Biotechnol. 5, 187–193 (1997).

    CAS  Google Scholar 

  25. Thoms, C., Ebel, R. & Proksch, P. Activated chemical defense in Aplysina sponges revisited. J. Chem. Ecol. 32, 97–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Müller, W.E.G., Hanske, W., Maidhof, A. & Zahn, R.K. Influence of apurinic acid on programmed synthesis in different in vitro systems. Can. Res. 33, 2330–2337 (1973).

    Google Scholar 

  27. Michels, G. et al. Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicol. 225, 173–182 (2006).

    Article  CAS  Google Scholar 

  28. Chovolou, Y., Wätjen, W., Kampkötter, A. & Kahl, R. Downregulation of NF-kB activation in a H4IIE transfectant insensitive to doxorubicin-induced apoptosis. Toxicol. 232, 89–98 (2007).

    Article  CAS  Google Scholar 

  29. Pelletier, S.W., Choksh, H.P. & Desai, H.K. Separation of diterenoid alkaloid mixtures using vacuum liquid chromatography. J. Nat. Prod. 49, 892–900 (1986).

    Article  CAS  Google Scholar 

  30. Coll, J.C. & Bowden, B.F. The application of vacuum liquid chromatography to the separation of terpene mixtures. J. Nat. Prod. 49, 934–936 (1986).

    Article  CAS  Google Scholar 

  31. Blunt, J.W. et al. Reverse phase flash chromatography: a method for the rapid partitioning of natural product extracts. J. Nat. Prod. 50, 290–292 (1987).

    Article  CAS  Google Scholar 

  32. Murray, A.P., Rodriguez, S., Frontera, M.A., Tomas, M.A. & Mulet, M.C. Antioxidant metabolites from Limonium brasiliense (Boiss.) Kuntze. Z. Naturforsch. 59c, 477–480 (2004).

    Article  Google Scholar 

  33. Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D. & Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Can. Res. 47, 943–946 (1987).

    CAS  Google Scholar 

  34. Ashour, M. et al. Kahalalide derivatives from the Indian Sacoglossan mollusk Elysia grandifolia. J. Nat. Prod. 69, 1547–1553 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Professor Dr. W.E.G. Müller (University of Mainz) and Dr. W. Waetjen (Heinrich-Heine-University, Duesseldorf) for performing cytotoxicity (MTT) assays. We also acknowledge Dr. P. Tommes (Heinrich-Heine University, Duesseldorf) for his help in measuring mass spectra and Dr. W. Peters (Heinrich-Heine University, Duesseldorf), as well as Dr. V. Wray (Helmholtz Centre for Infection Research, Braunschweig), for performing NMR measurements. We also acknowledge Professor Dr. Gerhard Bringmann, Institute for Organic Chemistry, University of Wuerzburg, for performing CD spectral analysis. Continued financial support of our studies on bioactive marine natural products by the BMBF (Germany) as well as by numerous other grant agencies (e.g., DFG, DAAD, MOST, Egyptian Government Scholarship and others) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Proksch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebada, S., Edrada, R., Lin, W. et al. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc 3, 1820–1831 (2008). https://doi.org/10.1038/nprot.2008.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.182

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing