Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others

Key Points

  • Mutations in TP53 (encoding the tumour-suppressor protein p53) are the most common genetic lesions found in cancers, and contribute to cancer development, progression, metastasis, and resistance to therapy.

  • The results of decades of research provide detailed insights into the functional consequences of TP53 mutations; however, this knowledge has not been fully exploited in the clinic, owing to difficulties in drugging mutant p53.

  • Mutations in TP53 have traditionally been considered functionally equivalent, but an increased understanding of the effects of distinct mutations on p53 activity has led to the recognition of a 'rainbow of mutants' with differing properties.

  • We propose a novel, simplified classification system to categorize the various functional classes of p53 mutants for use in clinical oncology.

  • These categories are predicated on the location of the mutation within the N-terminal, DNA-binding, or oligomerization domain, as well as the often context-dependent effects of the mutation on p53 function: complete or partial loss of function, a dominant-negative effect, and/or gain-of-function properties.

  • Optimal targeting of these functionally variant categories of mutant p53 requires mutation-specific approaches, ranging from restoring wild-type activity to the mutant protein, to degradation of mutant p53.

Abstract

TP53, which encodes the tumour-suppressor protein p53, is the most frequently mutated gene across all cancer types. The presence of mutant p53 predisposes to cancer development, promotes the survival of cancer cells, and is associated with ineffective therapeutic responses and unfavourable prognoses. Despite these effects, no drug that abrogates the oncogenic functions of mutant p53 has yet been approved for the treatment of cancer. Current investigational therapeutic strategies are mostly aimed at restoring the wild-type activity of mutant p53, based on the assumption that all p53 mutants are functionally equal. Our increasing knowledge of mutant forms of p53, however, supports the antithetical hypothesis that not all p53 mutants have equivalent cellular effects; hence, a judicious approach to therapeutic targeting of mutant p53 is required. In this Review, we propose a categorization of the major classes of p53 mutants based on their functionality in tumour suppression and response to therapy. The emerging picture is that the mutations across TP53 form a 'rainbow of mutants', with varying degrees of functionality and different pathobiological consequences, necessitating the use of diverse therapeutic strategies to selectively target specific classes of mutation. The utility of this knowledge of TP53 mutations in developing selective therapeutic options, and in facilitating clinical decision-making is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Somatic and germ-line TP53 mutations in cancer.
Figure 2: Functional effects of p53 mutation types on predisposition to cancer.
Figure 3: Rainbow of p53 mutants.
Figure 4: Road to targeting mutant p53.
Figure 5: Six categories of approaches to targeting mutant p53.

Similar content being viewed by others

References

  1. Baker, S. et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244, 217–221 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouaoun, L. et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum. Mutat. 37, 865–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Zilfou, J. T. & Lowe, S. W. Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol. 1, a001883 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bieging, K. T., Mello, S. S. & Attardi, L. D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14, 359–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell. Biol. 16, 393–405 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nat. Rev. Mol. Cell. Biol. 8, 275–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Menendez, D., Inga, A. & Resnick, M. A. The expanding universe of p53 targets. Nat. Rev. Cancer 9, 724–737 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Vaseva, A. V. & Moll, U. M. The mitochondrial p53 pathway. Biochim. Biophys. Acta - Bioenerg. 1787, 414–420 (2009).

    Article  CAS  Google Scholar 

  11. Donehower, L. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Donehower, L. A. Insights into wild-type and mutant p53 functions provided by genetically engineered mice. Hum. Mutat. 35, 715–727 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, M. K. et al. Cell-type, dose, and mutation-type specificity dictate mutant p53 functions in vivo. Cancer Cell 22, 751–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hanel, W. et al. Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20, 898–909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brady, C. A. et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 145, 571–583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valente, L. J. et al. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339–1345 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Lu, C. & El-Deiry, W. S. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 14, 597–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ablain, J. Poirot, B., Esnault, C., Lehmann-Che, J. & de Thé, H. p53 as an effector or inhibitor of therapy response. Cold Spring Harb. Perspect. Med. 6, a026260 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  22. Pirollo, K. F., Bouker, K. B. & Chang, E. H. Does p53 status influence tumor response to anticancer therapies? Anticancer Drugs 11, 419–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W. & Chang, E. H. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Merino, D. & Malkin, D. p53 and hereditary cancer. Subcell. Biochem. 85, 1–16 (2014).

    Article  PubMed  Google Scholar 

  25. Cancer. Net Editorial Board. Li-Fraumeni syndrome. Cancer.Net http://www.cancer.net/cancer-types/li-fraumeni-syndrome (2016).

  26. Petitjean, A., Achatz, M. I. W., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Kucab, J. E., Phillips, D. H. & Arlt, V. M. Linking environmental carcinogen exposure to TP53 mutations in human tumours using the human TP53 knock-in (Hupki) mouse model. FEBS J. 277, 2567–2583 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dearth, L. R. et al. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28, 289–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Nozaki, M. et al. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro. Oncol. 1, 124–137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fenoglio-Preiser, C. M., Wang, J., Stemmermann, G. N. & Noffsinger, A. TP53 and gastric carcinoma: a review. Hum. Mut. 21, 258–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Semczuk, A., Schneider-Stock, R. & Szewczuk, W. Prevalence of allelic loss at TP53 in endometrial carcinomas. Oncology 78, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Baker, S. J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50, 7717–7722 (1990).

    CAS  PubMed  Google Scholar 

  34. Forslund, A. et al. p53 mutations in colorectal cancer assessed in both genomic DNA and cDNA as compared to the presence of p53 LOH. Int. J. Oncol. 21, 409–415 (2002).

    CAS  PubMed  Google Scholar 

  35. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Walerych, D., Napoli, M., Collavin, L. & Del Sal, G. The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33, 2007–2017 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahmed, A. A. et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 221, 49–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, G., Liu, Z. & Myers, J. N. TP53 mutations in head and neck squamous cell carcinoma and their impact on disease progression and treatment response. J. Cell. Biochem. 117, 2682–2692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, C. H. et al. TP53 mutational analysis enhances the prognostic accuracy of IHC4 and PAM50 assays. Sci. Rep. 5, 17879 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joerger, A. C. & Fersht, A. R. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226–2242 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Muller, P. A. J. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Freed-Pastor, W. A. & Prives, C. Mutant p53: one name, many proteins. Genes Dev. 26, 1268–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goh, A. M., Coffill, C. R. & Lane, D. P. The role of mutant p53 in human cancer. J. Pathol. 223, 116–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Rivlin, N., Brosh, R., Oren, M. & Rotter, V. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2, 466–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tarapore, P., Horn, H. F., Tokuyama, Y. & Fukasawa, K. Direct regulation of the centrosome duplication cycle by the p53-p21Waf1/Cip1 pathway. Oncogene 20, 3173–3184 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. El-Hizawi, S., Lagowski, J. P., Kulesz-Martin, M. & Albor, A. Induction of gene amplification as a gain-of-function phenotype of mutant p53 proteins. Cancer Res. 62, 3264–3270 (2002).

    CAS  PubMed  Google Scholar 

  47. Noll, J. E. et al. Mutant p53 drives multinucleation and invasion through a process that is suppressed by ANKRD11. Oncogene 31, 2836–2848 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Song, H. Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol. 9, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Blandino, G., Levine, A. J. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18, 477–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Bristow, R. G. et al. Resistance to DNA-damaging agents is discordant from experimental metastatic capacity in MEF ras-transformants-expressing gain of function MTp53. Oncogene 22, 2960–2966 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Vikhanskaya, F., Siddique, M. M., Lee, M. K., Broggini, M. & Sabapathy, K. Evaluation of the combined effect of p53 codon 72 polymorphism and hotspot mutations in response to anticancer drugs. Clin. Cancer Res. 11, 4348–4356 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Hansen, S. A. et al. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis. Dis. Model. Mech. 9, 1139–1146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berghmans, S. et al. Tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lavigueur, A. et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol. Cell. Biol. 9, 3982–3991 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dudgeon, C. et al. The evolution of thymic lymphomas in p53 knockout mice. Genes Dev. 28, 2613–2620 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heinlein, C. et al. Mutant p53R270H gain of function phenotype in a mouse model for oncogene-induced mammary carcinogenesis. Int. J. Cancer 122, 1701–1709 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fontemaggi, G. et al. The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat. Struct. Mol. Biol. 16, 1086–1093 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Sarig, R. et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J. Exp. Med. 207, 2127–2140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kratz, C. P. et al. Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin. Cancer Res. 23, e38–e45 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. McBride, K. A. et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat. Rev. Clin. Oncol. 11, 260–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Xu, J. et al. Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis. 5, e1108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang, H. J., Chun, S. M., Kim, K. R., Sohn, I. & Sung, C. O. Clinical relevance of gain-of-function mutations of p53 in high-grade serous ovarian carcinoma. PLoS ONE 8, e72609 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker, K. K. & Levine, A. J. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl Acad. Sci. USA 93, 15335–15340 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Candau, R. et al. Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity. Oncogene 15, 807–816 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Teufel, D. P., Freund, S. M., Bycroft, M. & Fersht, A. R. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl Acad. Sci. USA 104, 7009–7014 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mowat, M., Cheng, A., Kimura, N., Bernstein, A. & Benchimol, S. Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature 314, 633–636 (1985).

    Article  CAS  PubMed  Google Scholar 

  71. Rovinski, B. et al. Deletion of 5′-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol. Cell. Biol. 7, 847–853 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phang, B. H. et al. Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc. Natl Acad. Sci. USA 112, E6349–E6358 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Courtois, S. et al. ΔN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21, 6722–6728 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Ohki, R., Kawase, T., Ohta, T., Ichikawa, H. & Taya, Y. Dissecting functional roles of p53 N-terminal transactivation domains by microarray expression analysis. Cancer Sci. 98, 189–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Yin, Y., Stephen, C. W., Luciani, M. G. & Fåhraeus, R. p53 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat. Cell Biol. 4, 462–467 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Hofstetter, G. et al. The N-terminally truncated p53 isoform Δ40p53 influences prognosis in mucinous ovarian cancer. Int. J. Gynecol. Cancer 22, 372–379 (2012).

    Article  PubMed  Google Scholar 

  77. Lomax, M. E., Barnes, D. M., Hupp, T. R., Picksley, S. M. & Camplejohn, R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. DiGiammarino, E. L. et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat. Struct. Biol. 9, 12–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Itahana, Y. Ke, H. & Zhang, Y. p53 oligomerization is essential for its C-terminal lysine acetylation. J. Biol. Chem. 284, 5158–5164 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou, X. et al. COOH-terminal domain of p53 modulates p53-mediated transcriptional transactivation, cell growth, and apoptosis. Cancer Res. 59, 843–848 (1999).

    CAS  PubMed  Google Scholar 

  81. Plummer, S. J. et al. A germline 2.35 kb deletion of p53 genomic DNA creating a specific loss of the oligomerization domain inherited in a Li-Fraumeni syndrome family. Oncogene 9, 3273–3280 (1994).

    CAS  PubMed  Google Scholar 

  82. Achatz, M. I. et al. The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett. 245, 96–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Ribeiro, R. C. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc. Natl Acad. Sci. USA 98, 9330–9335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Galea, C., Bowman, P. & Kriwacki, R. W. Disruption of an intermonomer salt bridge in the p53 tetramerization domain results in an increased propensity to form amyloid fibrils. Protein Sci. 14, 2993–3003 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Inga, A. et al. Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis 18, 2019–2021 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Jia, L. Q. et al. Screening the p53 status of human cell lines using a yeast functional assay. Mol. Carcinog. 19, 243–253 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Sabapathy, K. The contrived mutant p53 oncogene — beyond loss of functions. Front. Oncol. 5, 276 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bossi, G. et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25, 304–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Vikhanskaya, F., Lee, M. K., Mazzoletti, M., Broggini, M. & Sabapathy, K. Cancer-derived p53 mutants suppress p53-target gene expression — potential mechanism for gain of function of mutant p53. Nucleic Acids Res. 35, 2093–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kemp, C. J., Wheldon, T. & Balmain, A. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat. Genet. 8, 66–69 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Kern, S. E. et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256, 827–830 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Milner, J. & Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  95. Sun, Y., Dong, Z., Nakamura, K. & Colburn, N. H. Dosage-dependent dominance over wild-type p53 of a mutant p53 isolated from nasopharyngeal carcinoma. FASEB J. 7, 944–950 (1993).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, M. K. & Sabapathy, K. The R246S hot-spot p53 mutant exerts dominant-negative effects in embryonic stem cells in vitro and in vivo. J. Cell Sci. 121, 1899–1906 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, Y. et al. Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J. Clin. Invest. 121, 893–904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chan, W. M., Siu, W. Y., Lau, A. & Poon, R. Y. C. How many mutant p53 molecules are needed to inactivate a tetramer? Mol. Cell. Biol. 24, 3536–3551 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dittmer, D. et al. Gain of function mutations in p53. Nat. Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Tan, B. S. et al. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 6, e1826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alexandrova, E. M. et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 523, 352–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Girardini, J. E. et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20, 79–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Haupt, S. et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res. 69, 4818–4826 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Scian, M. J. et al. Tumor-derived p53 mutants induce NF-κB2 gene expression. Mol. Cell. Biol. 25, 10097–10110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weissmueller, S. et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell 157, 382–394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Muller, P. A. et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 139, 1327–1341 (2009).

    Article  PubMed  Google Scholar 

  108. Zhu, J. et al. Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525, 206–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Walerych, D. et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol. 18, 897–909 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, C. et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 4, 2935 (2013).

    Article  PubMed  CAS  Google Scholar 

  111. Iyer, S. V. et al. Allele-specific silencing of mutant p53 attenuates dominant-negative and gain-of-function activities. Oncotarget 7, 5401–5415 (2016).

    Article  PubMed  Google Scholar 

  112. Hupp, T. R., Meek, D. W., Midgley, C. A. & Lane, D. P. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res. 21, 3167–3174 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Selivanova, G. et al. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat. Med. 3, 632–638 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Hupp, T. R., Sparks, A. & Lane, D. P. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Q. et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl Cancer Inst. 88, 956–965 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat. Med. 3, 639–645 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Peng, Z., Yu, Q. & Bao, L. The application of gene therapy in China. IDrugs 11, 346–350 (2008).

    PubMed  Google Scholar 

  118. Andreeff, M. et al. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia. Clin. Cancer Res. 22, 868–876 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Tan, B. X. et al. Assessing the efficacy of Mdm2/Mdm4-inhibiting stapled peptides using cellular thermal shift assays. Sci. Rep. 5, 12116 (2015).

    Article  PubMed  Google Scholar 

  121. Khoo, K. H., Hoe, K. K., Verma, C. S. & Lane, D. P. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Burgess, A. et al. Clinical overview of MDM2/X-targeted therapies. Front. Oncol. 6, 7 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Bykov, V. J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med. 8, 282–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Shi, L. M. et al. Mining the National Cancer Institute Anticancer Drug Discovery Database: cluster analysis of ellipticine analogs with p53-inverse and central nervous system-selective patterns of activity. Mol. Pharmacol. 53, 241–251 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. North, S., Pluquet, O., Maurici, D., Ghissassi, F. E. & Hainaut, P. Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53V272M) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol. Carcinog. 33, 181–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Bykov, V. J. et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. J. Biol. Chem. 280, 30384–30391 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Zache, N. et al. Mutant p53 targeting by the low molecular weight compound STIMA-1. Mol. Oncol. 2, 70–80 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weinmann, L. et al. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 15, 718–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Demma, M. et al. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA Binding Domain (DBD), restores growth-suppressive function to mutant p53 and interrupts HDM2-mediated ubiquitination of wild type p53. J. Biol. Chem. 285, 10198–10212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yu, X., Vazquez, A., Levine, A. J. & Carpizo, D. R. Allele-specific p53 mutant reactivation. Cancer Cell 21, 614–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu, X. et al. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034–6044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wassman, C. D. et al. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat. Commun. 4, 1407 (2013).

    Article  PubMed  CAS  Google Scholar 

  136. Hiraki, M. et al. Small-molecule reactivation of mutant p53 to wild-type-like p53 through the p53-Hsp40 regulatory axis. Chem. Biol. 22, 1206–1216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Soragni, A. et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell 29, 90–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Salim, K. Y., Maleki Vareki, S., Danter, W. R. & Koropatnick, J. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo. Oncotarget 7, 41363–41379 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Aggarwal, M. et al. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ. 23, 1615–1627 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tal, P. et al. Cancer therapeutic approach based on conformational stabilization of mutant p53 protein by small peptides. Oncotarget 8, 1159–1160 (2016).

    Google Scholar 

  141. Bykov, V. J. & Wiman, K. G. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett. 588, 2622–2627 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Blanden, A. R. et al. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore. Mol. Pharmacol. 87, 825–831 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li, D., Marchenko, N. D. & Moll, U. M. SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18, 1904–1913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wei, S. et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 21, 457–466 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ma, C. X. et al. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J. Clin. Invest. 122, 1541–1552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, Y. et al. Radiosensitization of p53 mutant cells by PD0166285, a novel G2 checkpoint abrogator. Cancer Res. 61, 8211–8217 (2001).

    CAS  PubMed  Google Scholar 

  147. Linzer, D. I. H. & Levine, A. J. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  148. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article  CAS  PubMed  Google Scholar 

  149. Kress, M., May, E., Cassingena, R. & May, P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol. 31, 472–483 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Deleo, A. B. et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Immunology 76, 2420–2424 (1979).

    CAS  Google Scholar 

  151. Tebbutt, N., Pedersen, M. W. & Johns, T. G. Targeting the ERBB family in cancer: couples therapy. Nat. Rev. Cancer 13, 663–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Arora, A. & Scholar, E. M. Role of tyrosine kinase inhibitors in cancer therapy. Pharmacology 315, 971–979 (2005).

    CAS  Google Scholar 

  153. Wang, W., Takimoto, R., Rastinejad, F. & El-Deiry, W. S. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol. Cell. Biol. 23, 2171–2181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Reihsaus, E., Kohler, M., Kraiss, S., Oren, M. & Montenarh, M. Regulation of the level of the oncoprotein p53 in non-transformed and transformed cells. Oncogene 5, 137–145 (1990).

    CAS  PubMed  Google Scholar 

  155. Gronostajski, R. M., Goldberg, A. L. & Pardee, A. B. Energy requirement for degradation of tumor-associated protein p53. Mol. Cell. Biol. 4, 442–448 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stuber, G. et al. PRIMA-1MET induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5 protein. Mol. Cancer 8, 23 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Martinez, L. A. et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl Acad. Sci. USA 99, 14849–14854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bromley, D., Bauer, M. R., Fersht, A. R. & Daggett, V. An in silico algorithm for identifying stabilizing pockets in proteins: test case, the Y220C mutant of the p53 tumor suppressor protein. Protein Eng. Des. Sel. 29, 377–390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kumar, S., Mohan, A. & Guleria, R. Prognostic implications of circulating anti-p53 antibodies in lung cancer — a review. Eur. J. Cancer Care 18, 248–254 (2009).

    Article  CAS  Google Scholar 

  160. Schuler, P. J. et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res. 20, 2433–2444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hong, C. W. & Zeng, Q. Awaiting a new era of cancer immunotherapy. Cancer Res. 72, 3715–3719 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Gagan, J. & Van Allen, E. M. Next-generation sequencing to guide cancer therapy. Genome Med. 7, 80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Martin, T. G. et al. Design of a molecular support for cryo-EM structure determination. Proc. Natl Acad. Sci. USA 118, E7456–E7463 (2016).

    Article  CAS  Google Scholar 

  165. Eliyahu, D., Raz, A., Gruss, P., Givol, D. & Oren, M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312, 646–649 (1984).

    Article  CAS  PubMed  Google Scholar 

  166. Jenkins, J. R., Rudge, K. & Currie, G. A. Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312, 651–654 (1984).

    Article  CAS  PubMed  Google Scholar 

  167. Parada, L. F., Land, H., Weinberg, R. A., Wolf, D. & Rotter, V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649–651 (1984).

    Article  CAS  PubMed  Google Scholar 

  168. Wolf, D., Harris, N. & Rotter, V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38, 119–126 (1984).

    Article  CAS  PubMed  Google Scholar 

  169. Finlay, C. A., Hinds, P. W. & Levine, A. J. The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083–1093 (1989).

    Article  CAS  PubMed  Google Scholar 

  170. Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasi-Kimhi, O. & Oren, M. Wild-type p53 can inhibit oncogene-mediated focus formation. Proc. Natl Acad. Sci. USA 86, 8763–8767 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    Article  CAS  PubMed  Google Scholar 

  172. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990).

    Article  CAS  PubMed  Google Scholar 

  173. Deb, S., Jackson, C. T., Subler, M. A. & Martin, D. W. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J. Virol. 66, 6164–6170 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Verhaegh, G. W., Parat, M. O., Richard, M. J. & Hainaut, P. Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Mol. Carcinog. 21, 205–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Brachmann, R. K., Yu, K., Eby, Y., Pavletich, N. P. & Boeke, J. D. Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17, 1847–1859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lehmann, S. et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J. Clin. Oncol. 30, 3633–3639 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Medical Research Council of Singapore and the National Research Foundation of Singapore for funding support to K.S., and the Agency for Science, Technology, and Research (A*STAR), Singapore, for funding support to D.P.L.

Author information

Authors and Affiliations

Authors

Contributions

K.S. researched data for the article and wrote the manuscript. Both authors contributed to discussions of content and reviewed/edited the manuscript before submission.

Corresponding authors

Correspondence to Kanaga Sabapathy or David P. Lane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Summary of therapies targeting p53 (PDF 855 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabapathy, K., Lane, D. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat Rev Clin Oncol 15, 13–30 (2018). https://doi.org/10.1038/nrclinonc.2017.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.151

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer