Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes

Key Points

  • Atherosclerosis is a major cause of mortality throughout the western world, despite the existence of drugs that lower cholesterol.

  • The incidences of obesity and type 2 diabetes are increasing at alarming rates, and have become major health problems; treatments that involve lifestyle changes have had limited success.

  • New therapies for atherosclerosis, obesity and type 2 diabetes are needed.

  • Thyroid hormone excess has potentially useful effects, including lowering of serum cholesterol and reduction of body fat, but these are counterbalanced by deleterious effects on heart, muscle and bone which preclude the use of natural thyroid hormones to treat patients with dyslipidaemias, obesity and diabetes. For years, scientists have sought thyroid hormone analogues that would elicit the beneficial but not the unwanted effects of thyroid hormones.

  • Advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit thyroid hormone receptor isoform-selective binding, and/or liver- and tissue-selective uptake. These compounds reduce serum levels of low-density lipoprotein–cholesterol and triglycerides, enhance several important steps in reverse cholesterol transport and reduce body fat in several animal models, and have not been found to have effects in preclinical animal models.

  • Selective thyroid hormone receptor modulators also reduce blood glucose levels in mouse models of type 2 diabetes, raising the possibility that there could be unexpected beneficial effects on this disease.

  • Clinical trials, which have now involved several hundred patients, reveal that selective thyroid hormone mimetics can reduce serum levels of low-density lipoprotein–cholesterol, triglycerides and lipoprotein(a), which are all risk factors for atherosclerosis, without detectable adverse effects. These actions can also be observed in patients taking other currently used cholesterol-lowering drugs, such as statins.

  • Selective thyroid hormone receptor modulation is a promising new strategy for the prevention and treatment of atherosclerosis and obesity in humans.

Abstract

Thyroid hormones influence heart rate, serum lipids, metabolic rate, body weight and multiple aspects of lipid, carbohydrate, protein and mineral metabolism. Although increased thyroid hormone levels can improve serum lipid profiles and reduce fat, these positive effects are counterbalanced by harmful effects on the heart, muscle and bone. Thus, attempts to use thyroid hormones for cholesterol-lowering and weight loss purposes have so far been limited. However, over the past decade, thyroid hormone analogues that are capable of uncoupling beneficial effects from deleterious effects have been developed. Such drugs could serve as powerful new tools to address two of the largest medical problems in developed countries — atherosclerosis and obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beneficial and deleterious effects of thyroid hormone and mechanisms of thyroid hormone mimetic selectivity.
Figure 2: Effects of thyroid hormone mimetics and statins on cholesterol metabolism.
Figure 3: Predicted dynamics of the hypothalamic–pituitary–thyroid (HPT) axis in the presence of thyroid hormone mimetics.

Similar content being viewed by others

References

  1. Saunders, E. & Ofili, E. Epidemiology of atherothrombotic disease and the effectiveness and risks of antiplatelet therapy: race and ethnicity considerations. Cardiol. Rev. 16, 82–88 (2008).

    PubMed  Google Scholar 

  2. Jones, P. H. & Farmer, J. A. Adjunctive interventions in myocardial infarction: the role of statin therapy. Curr. Atheroscler. Rep. 10, 142–148 (2008).

    CAS  PubMed  Google Scholar 

  3. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    CAS  PubMed  Google Scholar 

  4. Ara, R. et al. Ezetimibe for the treatment of hypercholesterolaemia: a systematic review and economic evaluation. Health Technol. Assess. 12, 1–212 (2008).

    Google Scholar 

  5. Hedley, A. A. et al. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 291, 2847–2850 (2004).

    CAS  PubMed  Google Scholar 

  6. Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    CAS  PubMed  Google Scholar 

  7. Gaede, P. et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N. Engl. J. Med. 348, 383–393 (2003).

    PubMed  Google Scholar 

  8. Boyle, J. P. et al. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 24, 1936–1940 (2001).

    CAS  PubMed  Google Scholar 

  9. Huijgen, R. et al. Familial hypercholesterolemia: current treatment and advances in management. Expert Rev. Cardiovasc. Ther. 6, 567–581 (2008).

    CAS  PubMed  Google Scholar 

  10. O'Rahilly, S. & Farooqi, I. S. Human obesity: a heritable neurobehavioral disorder that is highly sensitive to environmental conditions. Diabetes 57, 2905–2910 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wierzbicki, A. S., Graham, C. A., Young, I. S. & Nicholls, D. P. Familial combined hyperlipidaemia: under-defined and under-diagnosed? Curr. Vasc. Pharmacol. 6, 13–22 (2008).

    CAS  PubMed  Google Scholar 

  12. Farooqi, S. & O'Rahilly, S. Genetics of obesity in humans. Endocr. Rev. 27, 710–718 (2006).

    CAS  PubMed  Google Scholar 

  13. Clark, P. M. Programming of the hypothalamo-pituitary-adrenal axis and the fetal origins of adult disease hypothesis. Eur. J. Pediatr. 157 (Suppl. 1), 7–10 (1998).

    Google Scholar 

  14. Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).

    CAS  PubMed  Google Scholar 

  15. Gereben, B. et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr. Rev. 29, 898–938 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Friesema, E. C. et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol. Endocrinol. 22, 1357–1369 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Visser, W. E., Friesema, E. C., Jansen, J. & Visser, T. J. Thyroid hormone transport in and out of cells. Trends Endocrinol. Metab. 19, 50–56 (2008).

    CAS  PubMed  Google Scholar 

  18. Suzuki, S., Mori, J. & Hashizume, K. μ-crystallin, a NADPH-dependent T3-binding protein in cytosol. Trends Endocrinol. Metab. 18, 286–289 (2007).

    CAS  PubMed  Google Scholar 

  19. Bianco, A. C. & Kim, B. W. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116, 2571–2579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  21. Zhang, J. & Lazar, M. A. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 62, 439–466 (2000).

    CAS  PubMed  Google Scholar 

  22. O'Shea, P. J. & Williams, G. R. Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J. Endocrinol. 175, 553–570 (2002).

    CAS  PubMed  Google Scholar 

  23. Bookout, A. L. et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126, 789–799 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  25. Ricote, M. & Glass, C. K. PPARs and molecular mechanisms of transrepression. Biochim. Biophys. Acta 1771, 926–935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baxter, J. D. et al. Selective modulation of thyroid hormone receptor action. J. Steroid Biochem. Mol. Biol. 76, 31–42 (2001).

    CAS  PubMed  Google Scholar 

  27. Webb, P. Selective activators of thyroid hormone receptors. Expert Opin. Investig. Drugs 13, 489–500 (2004).

    CAS  PubMed  Google Scholar 

  28. Cutting, W. C., Rytand, D. A. & Tainter, M. L. Relationship between blood cholesterol and increased metabolism from dinitrophenol and thyroid. J. Clin. Invest. 13, 547–552 (1934).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Simpkins, S. Dintrophenol and desiccated thyroid in the treatment of obesity. JAMA 108, 2110–2119 (1937).

    Google Scholar 

  30. Moreno, M. et al. Metabolic effects of thyroid hormone derivatives. Thyroid 18, 239–253 (2008).

    CAS  PubMed  Google Scholar 

  31. Yoshihara, H. A. & Scanlan, T. S. Selective thyroid hormone receptor modulators. Curr. Top. Med. Chem. 3, 1601–1616 (2003).

    CAS  PubMed  Google Scholar 

  32. [No authors listed.] The coronary drug project. Findings leading to further modifications of its protocol with respect to dextrothyroxine. The coronary drug project research group. JAMA 220, 996–1008 (1972).

  33. Young, W. F. Jr, Gorman, C. A., Jiang, N. S., Machacek, D. & Hay, I. D. L-thyroxine contamination of pharmaceutical D-thyroxine: probable cause of therapeutic effect. Clin. Pharmacol. Ther. 36, 781–787 (1984).

    PubMed  Google Scholar 

  34. Sherman, S. I. et al. Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J. Clin. Endocrinol. Metab. 82, 2153–2158 (1997).

    CAS  PubMed  Google Scholar 

  35. Baxter, J. D., Webb, P., Grover, G. & Scanlan, T. S. Selective activation of thyroid hormone signaling pathways by GC-1: a new approach to controlling cholesterol and body weight. Trends Endocrinol. Metab. 15, 154–157 (2004).

    CAS  PubMed  Google Scholar 

  36. Yen, P. M. Molecular basis of resistance to thyroid hormone. Trends Endocrinol. Metab. 14, 327–333 (2003).

    CAS  PubMed  Google Scholar 

  37. Weiss, R. E. et al. Thyroid hormone and cardiac function in mice deficient in thyroid hormone receptor-α or -β: an echocardiograph study. Am. J. Physiol. Endocrinol. Metab. 283, E428–E435 (2002).

    CAS  PubMed  Google Scholar 

  38. Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).

    CAS  PubMed  Google Scholar 

  39. Wagner, R. L. et al. A structural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 (1995).

    CAS  PubMed  Google Scholar 

  40. Wagner, R. L. et al. Hormone selectivity in thyroid hormone receptors. Mol. Endocrinol. 15, 398–410 (2001).

    CAS  PubMed  Google Scholar 

  41. Ye, L. et al. Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor β1 . J. Med. Chem. 46, 1580–1588 (2003).

    CAS  PubMed  Google Scholar 

  42. Trost, S. U. et al. The thyroid hormone receptor-β-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141, 3057–3064 (2000). Proof of concept that GC-1 elicits lipid-lowering effects without producing harmful effects on the heart and the first demonstration that GC-1 is also liver selective.

    CAS  PubMed  Google Scholar 

  43. Grover, G. J. et al. Selective thyroid hormone receptor-β activation: a strategy for reduction of weight, cholesterol, and lipoprotein (a) with reduced cardiovascular liability. Proc. Natl Acad. Sci. USA 100, 10067–10072 (2003). Proof of concept that a purely THRβ-selective analogue can elicit beneficial effects on serum lipids and body fat.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gloss, B. et al. Different configurations of specific thyroid hormone response elements mediate opposite effects of thyroid hormone and GC-1 on gene expression. Endocrinology 146, 4926–4933 (2005).

    CAS  PubMed  Google Scholar 

  45. Moore, J. M. et al. Quantitative proteomics of the thyroid hormone receptor–coregulator interactions. J. Biol. Chem. 279, 27584–27590 (2004).

    CAS  PubMed  Google Scholar 

  46. Berkenstam, A. et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad. Sci. USA 105, 663–667 (2008). First evidence in humans that the lipid-lowering effects of a TRβ- and liver-selective analogue can be achieved without deleterious effects on the heart.

    CAS  PubMed  Google Scholar 

  47. Erion, M. D. et al. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl Acad. Sci. USA 104, 15490–15495 (2007). Describes the mechanism of action and effect of MB07811, a liver-targeted thyroid hormone mimetic, showing that it lowers cholesterol in animals but lacks effects on body fat and exhibits reduced suppression of thyroid hormone production through the HPT axis.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Grover, G. J. et al. Effects of the thyroid hormone receptor agonist GC-1 on metabolic rate and cholesterol in rats and primates: selective actions relative to 3,5,3′-triiodo-L-thyronine. Endocrinology 145, 1656–1661 (2004).

    CAS  PubMed  Google Scholar 

  49. Johansson, L. et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc. Natl Acad. Sci. USA 102, 10297–10302 (2005). Evidence that a selective thyroid hormone mimetic enhances important steps in reverse cholesterol transport.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Perra, A. et al. Thyroid hormone (triiodothyronine) and thyroid hormone receptorβ agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008). This study shows that GC-1 can reverse hepatic steatosis in rodent models.

    CAS  PubMed  Google Scholar 

  51. Villicev, C. M. et al. Thyroid hormone receptor β-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J. Endocrinol. 193, 21–29 (2007).

    CAS  PubMed  Google Scholar 

  52. Bryzgalova, G. et al. Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor β subtype selective agonist KB-141. J. Steroid Biochem. Mol. Biol. 111, 262–267 (2008). A study showing that the TRβ-selective analogue KB141 has surprising beneficial effects on blood glucose in mouse models of diabetes.

    CAS  PubMed  Google Scholar 

  53. Erickson, S. K. et al. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice. J. Lipid Res. 44, 1001–1009 (2003).

    CAS  PubMed  Google Scholar 

  54. Pullinger, C. R., Kane, J. P. & Malloy, M. J. Primary hypercholesterolemia: genetic causes and treatment of five monogenic disorders. Expert Rev. Cardiovasc. Ther. 1, 107–119 (2003).

    CAS  PubMed  Google Scholar 

  55. Drover, V. A., Wong, N. C. & Agellon, L. B. A distinct thyroid hormone response element mediates repression of the human cholesterol 7α-hydroxylase (CYP7A1) gene promoter. Mol. Endocrinol. 16, 14–23 (2002).

    CAS  PubMed  Google Scholar 

  56. Drover, V. A. & Agellon, L. B. Regulation of the human cholesterol 7α-hydroxylase gene (CYP7A1) by thyroid hormone in transgenic mice. Endocrinology 145, 574–581 (2004).

    CAS  PubMed  Google Scholar 

  57. Ellis, E. C. Suppression of bile acid synthesis by thyroid hormone in primary human hepatocytes. World J. Gastroenterol. 12, 4640–4645 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Berkenstam, A. et al. 88th Annual Meeting of the Endocrine Society Program and Abstracts, P253, P541 (2006).

  59. Nicholls, S. J. & Nissen, S. E. New targets of high-density lipoprotein therapy. Curr. Opin. Lipidol. 18, 421–426 (2007).

    CAS  PubMed  Google Scholar 

  60. Calabresi, L., Sirtori, C. R., Paoletti, R. & Franceschini, G. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases. Curr. Atheroscler. Rep. 8, 163–167 (2006).

    CAS  PubMed  Google Scholar 

  61. Hargrove, G. M., Junco, A. & Wong, N. C. Hormonal regulation of apolipoprotein AI. J. Mol. Endocrinol. 22, 103–111 (1999).

    CAS  PubMed  Google Scholar 

  62. Rollins, J., Chen, Y., Paigen, B. & Wang, X. In search of new targets for plasma high-density lipoprotein cholesterol levels: promise of human–mouse comparative genomics. Trends Cardiovasc. Med. 16, 220–234 (2006).

    CAS  PubMed  Google Scholar 

  63. Zhang, L. & Chawla, A. Role of PPARγ in macrophage biology and atherosclerosis. Trends Endocrinol. Metab. 15, 500–505 (2004).

    CAS  PubMed  Google Scholar 

  64. Ellington, A. A. & Kullo, I. J. Atherogenic lipoprotein subprofiling. Adv. Clin. Chem. 46, 295–317 (2008).

    CAS  PubMed  Google Scholar 

  65. Danesh, J., Collins, R. & Peto, R. Lipoprotein(a) and coronary heart disease. Meta-analysis of prospective studies. Circulation 102, 1082–1085 (2000).

    CAS  PubMed  Google Scholar 

  66. Freitas, F. R. et al. The thyroid hormone receptor β-specific agonist GC-1 selectively affects the bone development of hypothyroid rats. J. Bone Miner. Res. 20, 294–304 (2005).

    CAS  PubMed  Google Scholar 

  67. Freitas, F. R. et al. Spared bone mass in rats treated with thyroid hormone receptor thyroid hormone receptor β-selective compound GC-1. Am. J. Physiol. Endocrinol. Metab. 285, E1135–E1141 (2003).

    CAS  PubMed  Google Scholar 

  68. Ridgway, E. C. et al. ATA Program #SC4 (2007).

  69. Sjogren, M. et al. Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor α1. EMBO J. 26, 4535–4545 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Lin, V., Klepp, H. & Hanley, R. Sobetirome ss a thyroid hormone receptorβ- and liver-selective thyromimetic that can effect substantial LDL-C lowering without significant changes in heart rate or the thyroid axis in euthyroid men. 90th Annual Meeting Of the Endocrine Society, OR36–OR33 (2008).

  71. Ribeiro, M. O. Effects of thyroid hormone analogs on lipid metabolism and thermogenesis. Thyroid 18, 197–203 (2008).

    CAS  PubMed  Google Scholar 

  72. Videla, L. A., Fernandez, V., Tapia, G. & Varela, P. Thyroid hormone calorigenesis and mitochondrial redox signaling: upregulation of gene expression. Front. Biosci. 12, 1220–1228 (2007).

    CAS  PubMed  Google Scholar 

  73. Lebon, V. et al. Effect of triiodothyronine on mitochondrial energy coupling in human skeletal muscle. J. Clin. Invest. 108, 733–737 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Silva, J. E. Thermogenic mechanisms and their hormonal regulation. Physiol. Rev. 86, 435–464 (2006).

    CAS  PubMed  Google Scholar 

  75. Shulman, G. I., Ladenson, P. W., Wolfe, M. H., Ridgway, E. C. & Wolfe, R. R. Substrate cycling between gluconeogenesis and glycolysis in euthyroid, hypothyroid, and hyperthyroid man. J. Clin. Invest. 76, 757–764 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Petersen, K. F., Blair, J. B. & Shulman, G. I. Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver. Metabolism 44, 1380–1383 (1995).

    CAS  PubMed  Google Scholar 

  77. Petersen, K. F., Cline, G. W., Blair, J. B. & Shulman, G. I. Substrate cycling between pyruvate and oxaloacetate in awake normal and 3, 3'-5-triiodo-L-thyronine-treated rats. Am. J. Physiol. 267, E273–E277 (1994).

    CAS  PubMed  Google Scholar 

  78. Levine, J. A., Eberhardt, N. L. & Jensen, M. D. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212–214 (1999).

    CAS  PubMed  Google Scholar 

  79. Crunkhorn, S. & Patti, M. E. Links between thyroid hormone action, oxidative metabolism, and diabetes risk? Thyroid 18, 227–237 (2008).

    CAS  PubMed  Google Scholar 

  80. Cable, E. E. et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 49, 407–417 (2008).

    Google Scholar 

  81. Frank, N., Elliott, S. B. & Boston, R. C. Effects of long-term oral administration of levothyroxine sodium on glucose dynamics in healthy adult horses. Am. J. Vet. Res. 69, 76–81 (2008).

    CAS  PubMed  Google Scholar 

  82. Canani, L. H. et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90, 3472–3478 (2005).

    CAS  PubMed  Google Scholar 

  83. Columbano, A. et al. The thyroid hormone receptor-β agonist GC-1 induces cell proliferation in rat liver and pancreas. Endocrinology 147, 3211–3218 (2006).

    CAS  PubMed  Google Scholar 

  84. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nature Rev. Drug Discov. 7, 678–693 (2008).

    CAS  Google Scholar 

  85. Nguyen, A. & Bouscarel, B. Bile acids and signal transduction: role in glucose homeostasis. Cell Signal 20, 2180–2197 (2008).

    CAS  PubMed  Google Scholar 

  86. Samuels, M. H. Cognitive function in untreated hypothyroidism and hyperthyroidism. Curr. Opin. Endocrinol. Diabetes Obes. 15, 429–433 (2008).

    PubMed  Google Scholar 

  87. Williams, G. R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 20, 784–794 (2008).

    CAS  PubMed  Google Scholar 

  88. Woodcock, J. & Woosley, R. The FDA critical path initiative and its influence on new drug development. Annu. Rev. Med. 59, 1–12 (2008).

    CAS  PubMed  Google Scholar 

  89. Phillips, P. S. & Haas, R. H. Statin myopathy as a metabolic muscle disease. Expert Rev. Cardiovasc. Ther. 6, 971–978 (2008).

    CAS  PubMed  Google Scholar 

  90. Alsheikh-Ali, A. A. & Karas, R. H. The safety of niacin in the US Food and Drug Administration adverse event reporting database. Am. J. Cardiol. 101, 9B–13B (2008).

    CAS  PubMed  Google Scholar 

  91. Borngraeber, S. et al. Ligand selectivity by seeking hydrophobicity in thyroid hormone receptor. Proc. Natl Acad. Sci. USA 100, 15358–15363 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. Kristensen for critical reading and J. Hing Lin for help with figure preparation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

John D. Baxter is a consultant to and shareholder of Karo Bio A.B., which has commercial interests in thyroid hormone mimetics. He is also an inventor of a patent issued with regard to GC-1 that is owned by the University of California.

Related links

Related links

FURTHER INFORMATION

KaroBio website

QautRx website

Metabasis website

Glossary

Obesity

A condition characterized by accumulation of excess body fat and defined in humans by body mass index values of 30 kg per m2 or greater.

Atherosclerosis

A chronic inflammatory syndrome that affects blood vessel walls. There is hardening of arteries caused by macrophage infiltration and accumulation of cholesterol.

Type 2 diabetes

A condition that is characterized by high blood glucose levels associated with resistance to the hormone insulin.

Hypercholesterolaemia

A metabolic abnormality characterized by high serum cholesterol that can lead to increased atherosclerotic plaque formation and increased cardiovascular disease when there is increased low-density lipoprotein–cholesterol.

Hormone

A small molecule that is released by an organ and subsequently affects other tissues. Endocrine hormones, such as thyroid hormone, are directly secreted into the blood.

Nuclear hormone receptor

A soluble protein that acts by modulating expression of target genes in response to lipophilic hormones and other small molecules.

Transcription factor

A protein that binds to specific DNA sequences and controls the rate of transcription of genetic information into RNA.

Corepressor

A protein that decreases gene transcription by interacting with a transcription factor.

Co-activator

A protein that increases gene transcription by interacting with a transcription factor.

Enantiomer

A compound that is a non-superimposable mirror image of another.

Hormone resistance

A condition in which hormone (for example, insulin or thyroid hormone ) is produced at normal or increased levels, but the response is reduced by alterations in the signal transduction machinery.

Atherosclerotic plaque

An area of macrophage accumulation in the vessel wall that is associated with deposition of cholesterol crystals and calcification in more advanced lesions.

Lipoprotein particle

An assembly of lipids and proteins that serves to transport hydrophobic lipids in the aqueous environment of blood.

Polymorphism

When multiple alleles of the same gene exist in a given population.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, J., Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 8, 308–320 (2009). https://doi.org/10.1038/nrd2830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing