Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pax-8–PPAR-γ fusion protein in thyroid carcinoma

Key Points

  • The Pax-8–PPAR-γ fusion protein (PPFP) is a consequence of a chromosomal translocation found in approximately one-third of follicular carcinomas and some follicular-variant papillary carcinomas and benign follicular adenomas

  • In vitro and in vivo evidence indicates that PPFP acts as an oncoprotein

  • PPFP can act as a dominant-negative inhibitor of wild-type PPAR-γ and/or as a PPAR-γ-like transcription factor, and can activate or repress Pax-8-responsive genes

  • The PPAR-γ agonist pioglitazone has beneficial effects in a mouse model of PPFP-positive thyroid carcinoma, and is currently being tested in a phase II clinical trial

Abstract

Thyroid carcinoma is the most common endocrine malignancy, and its incidence is continuing to increase. Most thyroid carcinomas contain one of several known driver mutations, such as the Val600Glu substitution in B-Raf, Ras mutations, RET gene fusions, or PAX8–PPARG gene fusions. The PAX8–PPARG gene fusion results in the production of a Pax-8–PPAR-γ fusion protein (PPFP), which is found in approximately one-third of follicular thyroid carcinomas, as well as some follicular-variant papillary thyroid carcinomas. In vitro and in vivo evidence indicates that PPFP is an oncoprotein. Although specific mechanisms of action remain to be defined, PPFP is considered to act as a dominant-negative inhibitor of wild-type PPAR-γ and/or as a unique transcriptional activator of subsets of PPAR-γ-responsive and Pax-8-responsive genes. Detection of the fusion transcript in thyroid nodule biopsy specimens can aid clinical decision-making when cytological findings are indeterminate. The PPAR-γ agonist pioglitazone is highly therapeutic in a transgenic mouse model of PPFP-positive thyroid carcinoma, suggesting that PPAR-γ agonists might be beneficial in patients with PPFP-positive thyroid carcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PAX8 gene and its protein isoforms.
Figure 2: The PPARG gene and the PPAR-γ1 and PPAR-γ2 proteins.
Figure 3: The PAX8–PPARG fusion gene and resulting fusion protein, PPFP.

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts and Figures 2014 [online] (2014).

  2. Enewold, L. et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol. Biomarkers Prev. 18, 784–791 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wiest, P. W. et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J. Ultrasound Med. 17, 487–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Tomimori, E., Pedrinola, F., Cavaliere, H., Knobel, M. & Medeiros-Neto, G. Prevalence of incidental thyroid disease in a relatively low iodine intake area. Thyroid 5, 273–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Greaves, T. S. et al. Follicular lesions of thyroid: a 5-year fine-needle aspiration experience. Cancer 90, 335–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Sclabas, G. M. et al. Fine-needle aspiration of the thyroid and correlation with histopathology in a contemporary series of 240 patients. Am. J. Surg. 186, 702–710 (2003).

    Article  PubMed  Google Scholar 

  7. Papini, E. et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J. Clin. Endocrinol. Metab. 87, 1941–1946 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Carroll, B. A. Asymptomatic thyroid nodules: incidental sonographic detection. AJR Am. J. Roentgenol. 138, 499–501 (1982).

    Article  CAS  PubMed  Google Scholar 

  9. Yassa, L. et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer 111, 508–516 (2007).

    Article  PubMed  Google Scholar 

  10. Brander, A., Viikinkoski, P., Nickels, J. & Kivisaari, L. Thyroid gland: US screening in a random adult population. Radiology 181, 683–687 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Mazzaferri, E. L. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am. J. Med. 93, 359–362 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Frates, M. C. et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J. Clin. Endocrinol. Metab. 91, 3411–3417 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Namba, H. et al. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metab. 88, 4393–4397 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, K. H., Kang, D. W., Kim, S. H., Seong, I. O. & Kang, D. Y. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med. J. 45, 818–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen, Y. et al. BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst. 95, 625–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Adeniran, A. J. et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol. 30, 216–222 (2006).

    Article  PubMed  Google Scholar 

  17. Trovisco, V. et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J. Pathol. 202, 247–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Rabes, H. M. et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  19. Nikiforov, Y. E., Rowland, J. M., Bove, K. E., Monforte-Munoz, H. & Fagin, J. A. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  20. Bounacer, A. et al. High prevalence of activating RET proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15, 1263–1273 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Leeman-Neill, R. J. et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer 119, 1792–1799 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Esapa, C. T., Johnson, S. J., Kendall-Taylor, P., Lennard, T. W. & Harris, P. E. Prevalence of Ras mutations in thyroid neoplasia. Clin. Endocrinol. (Oxf.) 50, 529–535 (1999).

    Article  CAS  Google Scholar 

  23. Motoi, N. et al. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol. Res. Pract. 196, 1–7 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Namba, H., Rubin, S. A. & Fagin, J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol. Endocrinol. 4, 1474–1479 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. French, C. A. et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am. J. Pathol. 162, 1053–1060 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nikiforova, M. N. et al. RAS point mutations and PAX8–PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab. 88, 2318–2326 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Marques, A. R. et al. Expression of PAX8–PPARγ 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87, 3947–3952 (2002).

    CAS  PubMed  Google Scholar 

  28. Castro, P. et al. PAX8–PPARγ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Nikiforova, M. N., Biddinger, P. W., Caudill, C. M., Kroll, T. G. & Nikiforov, Y. E. PAX8–PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am. J. Surg. Pathol. 26, 1016–1023 (2002).

    Article  PubMed  Google Scholar 

  30. Dwight, T. et al. Involvement of the PAX8/peroxisome proliferator-activated receptor γ rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab. 88, 4440–4445 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lui, W.-O. et al. CREB3L2–PPARγ fusion mutation identifies a thyroid signaling pathway regulated by intramembrane proteolysis. Cancer Res. 68, 7156–7164 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Fagin, J. A. et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91, 179–184 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donghi, R. et al. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91, 1753–1760 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dobashi, Y. et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn. Mol. Pathol. 3, 9–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Ito, T. et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 52, 1369–1371 (1992).

    CAS  PubMed  Google Scholar 

  36. Garcia-Rostan, G. et al. β-Catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am. J. Pathol. 158, 987–996 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia-Rostan, G. et al. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma. Cancer Res. 59, 1811–1815 (1999).

    CAS  PubMed  Google Scholar 

  38. Kurihara, T. et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid 14, 1020–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ricarte-Filho, J. C. et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69, 4885–4893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garcia-Rostan, G. et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65, 10199–10207 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Santarpia, L., El-Naggar, A. K., Cote, G. J., Myers, J. N. & Sherman, S. I. Phosphatidylinositol 3-kinase/akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 93, 278–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Hou, P. et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin. Cancer Res. 13, 1161–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Dahia, P. L. et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 57, 4710–4713 (1997).

    CAS  PubMed  Google Scholar 

  44. Kim, C. S. et al. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology 146, 4456–4463 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Saito, J. et al. Regulation of FRTL-5 thyroid cell growth by phosphatidylinositol (OH) 3 kinase-dependent Akt-mediated signaling. Thyroid 11, 339–351 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Pasca di Magliano, M., Di Lauro, R. & Zannini, M. Pax8 has a key role in thyroid cell differentiation. Proc. Natl Acad. Sci. USA 97, 13144–13149 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Macchia, P. E. et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat. Genet. 19, 83–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Poleev, A. et al. Determination of functional domains of the human transcription factor PAX8 responsible for its nuclear localization and transactivating potential. Eur. J. Biochem. 247, 860–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Poleev, A. et al. Distinct functional properties of three human paired-box-protein, PAX8, isoforms generated by alternative splicing in thyroid, kidney and Wilms tumors. Eur. J. Biochem. 228, 899–911 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Rosen, E. D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Yamauchi, T. et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J. Biol. Chem. 276, 41245–41254 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Xu, H. E. et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397–403 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Forman, B. M. et al. 15-Deoxy-Δ12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Kliewer, S. A. et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raman, P., Kaplan, B. L. F., Thompson, J. T., Vanden Heuvel, J. P. & Kaminski, N. E. 15-Deoxy-Δ12,14-prostaglandin J2-glycerol ester, a putative metabolite of 2-arachidonyl glycerol, activates peroxisome proliferator activated receptor γ. Mol. Pharmacol. 80, 201–209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raman, P., Kaplan, B. L. F. & Kaminski, N. E. 15-Deoxy-Δ12,14-prostaglandin J2-glycerol, a putative metabolite of 2-arachidonyl glycerol and a peroxisome proliferator-activated receptor γ ligand, modulates nuclear factor of activated T cells. J. Pharmacol. Exp. Ther. 342, 816–826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Corzo, C. & Griffin, P. R. Targeting the peroxisome proliferator-activated receptor-γ to counter the inflammatory milieu in obesity. Diabetes Metab. J. 37, 395–403 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mueller, E. et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor γ isoforms. J. Biol. Chem. 277, 41925–41930 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fajas, L. et al. The organization, promoter analysis, and expression of the human PPARγ gene. J. Biol. Chem. 272, 18779–18789 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Kroll, T. G. et al. PAX8–PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289, 1357–1360 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Mascia, A., Nitsch, L., Di Lauro, R. & Zannini, M. Hormonal control of the transcription factor Pax8 and its role in the regulation of thyroglobulin gene expression in thyroid cells. J. Endocrinol. 172, 163–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Cheung, L. et al. Detection of the PAX8–PPAR γ fusion oncogene in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 88, 354–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Martelli, M. L. et al. Inhibitory effects of peroxisome proliferator-activated receptor γ on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab. 87, 4728–4735 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Zhu, Z., Gandhi, M., Nikiforova, M. N., Fischer, A. H. & Nikiforov, Y. E. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of Ras mutations. Am. J. Clin. Pathol. 120, 71–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Aldred, M. A. et al. Peroxisome proliferator-activated receptor γ is frequently downregulated in a diversity of sporadic nonmedullary thyroid carcinomas. Oncogene 22, 3412–3416 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Lacroix, L. et al. PAX8 and peroxisome proliferator-activated receptor γ 1 gene expression status in benign and malignant thyroid tissues. Eur. J. Endocrinol. 151, 367–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Hibi, Y. et al. Is thyroid follicular cancer in Japanese caused by a specific t(2;3)(q13;p25) translocation generating Pax8–PPARγ fusion mRNA? Endocr. J. 51, 361–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Marques, A. R. et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)γ in PAX8/PPARγ-negative thyroid tumours. Br. J. Cancer 91, 732–738 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sahin, M. et al. PPARγ staining as a surrogate for PAX8/PPARγ fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J. Clin. Endocrinol. Metab. 90, 463–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Castro, P., Roque, L., Magalhães, J. & Sobrinho-Simões, M. A subset of the follicular variant of papillary thyroid carcinoma harbors the PAX8–PPARγ translocation. Int. J. Surg. Pathol. 13, 235–238 (2005).

    Article  PubMed  Google Scholar 

  72. Foukakis, T. et al. The Ras effector NORE1A is suppressed in follicular thyroid carcinomas with a PAX8–PPARγ fusion. J. Clin. Endocrinol. Metab. 91, 1143–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Giordano, T. J. et al. Delineation, functional validation, and bioinformatic evaluation of gene expression in thyroid follicular carcinomas with the PAX8PPARG translocation. Clin. Cancer Res. 12, 1983–1993 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Klemke, M. et al. On the prevalence of the PAX8PPARG fusion resulting from the chromosomal translocation t(2;3)(q13;p25) in adenomas of the thyroid. Cancer Genet. 204, 334–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Jenkins, R. B. et al. Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer 66, 1213–1220 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Boos, L. A. et al. Diagnostic and prognostic implications of the PAX8–PPARγ translocation in thyroid carcinomas—a TMA-based study of 226 cases. Histopathology 63, 234–241 (2013).

    Article  PubMed  Google Scholar 

  77. Gregory Powell, J. et al. The PAX8/PPARγ fusion oncoprotein transforms immortalized human thyrocytes through a mechanism probably involving wild-type PPARγ inhibition. Oncogene 23, 3634–3641 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Au, A. Y. M. et al. PAX8–peroxisome proliferator-activated receptor γ (PPARγ) disrupts normal PAX8 or PPARγ transcriptional function and stimulates follicular thyroid cell growth. Endocrinology 147, 367–376 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Vu-Phan, D. et al. The thyroid cancer PAX8–PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype. Endocr. Relat. Cancer 20, 725–739 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Aiello, A. et al. Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial–mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology 147, 4463–4475 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Ohta, K., Endo, T. & Onaya, T. The mRNA levels of thyrotropin receptor, thyroglobulin and thyroid peroxidase in neoplastic human thyroid tissues. Biochem. Biophys. Res. Commun. 174, 1148–1153 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Park, J.-W. et al. Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid 15, 222–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Kitamura, S. et al. Peroxisome proliferator-activated receptor γ induces growth arrest and differentiation markers of human colon cancer cells. Jpn J. Cancer Res. 90, 75–80 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Keelan, J. A. et al. 15-Deoxy-Δ12,14-prostaglandin J2, a ligand for peroxisome proliferator-activated receptor-γ, induces apoptosis in JEG3 choriocarcinoma cells. Biochem. Biophys. Res. Commun. 262, 579–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Takahashi, N. et al. Activation of PPARγ inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett. 455, 135–139 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Tontonoz, P. et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor. Proc. Natl Acad. Sci. USA 94, 237–241 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kubota, T. et al. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 58, 3344–3352 (1998).

    CAS  PubMed  Google Scholar 

  88. Elstner, E. et al. Ligands for peroxisome proliferator-activated receptor γ and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc. Natl Acad. Sci. USA 95, 8806–8811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kato, Y. et al. PPARγ insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-κB signaling pathway. Oncogene 25, 2736–2747 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Karger, S. et al. Evaluation of peroxisome proliferator-activated receptor-γ expression in benign and malignant thyroid pathologies. Thyroid 15, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Lacroix, L. et al. Follicular thyroid tumors with the PAX8–PPARγ1 rearrangement display characteristic genetic alterations. Am. J. Pathol. 167, 223–231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wood, W. M. et al. PPARγ promotes growth and invasion of thyroid cancer cells. PPAR Res. 2011, 171765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Burton, J. D., Goldenberg, D. M. & Blumenthal, R. D. Potential of peroxisome proliferator-activated receptor γ antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res. 2008, 494161 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dobson, M. E. et al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8–PPARγ fusion protein thyroid carcinoma. Endocrinology 152, 4455–4465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Diallo-Krou, E. et al. Paired box gene 8–peroxisome proliferator-activated receptor-γ fusion protein and loss of phosphatase and tensin homolog synergistically cause thyroid hyperplasia in transgenic mice. Endocrinology 150, 5181–5190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reddi, H. V. et al. Expression of the PAX8/PPARγ fusion protein is associated with decreased neovascularization in vivo: impact on tumorigenesis and disease prognosis. Genes Cancer 1, 480–492 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Albelda, S. M., Oliver, P. D., Romer, L. H. & Buck, C. A. EndoCAM: a novel endothelial cell–cell adhesion molecule. J. Cell Biol. 110, 1227–1237 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  99. Espadinha, C., Cavaco, B. M. & Leite, V. PAX8PPARγ stimulates cell viability and modulates expression of thyroid-specific genes in a human thyroid cell line. Thyroid 17, 497–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Robson, E. J., He, S.-J. & Eccles, M. R. A PANorama of PAX genes in cancer and development. Nat. Rev. Cancer 6, 52–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Lui, W.-O. et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8–PPARγ fusion oncogene. Oncogene 24, 1467–1476 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Albuquerque, C. et al. Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosomes Cancer 49, 746–759 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Armstrong, M. J. et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid http://dx.doi.org/10.1089/thy.2014.0067.

  104. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. US National Library of Medicine. ClinicalTrails.gov [online], (2012).

Download references

Acknowledgements

R.J.K.'s research work was supported by NIH grants R01CA151842 and R01CA166033.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ronald J. Koenig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raman, P., Koenig, R. Pax-8–PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol 10, 616–623 (2014). https://doi.org/10.1038/nrendo.2014.115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing