Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intravenous immunoglobulin therapy: how does IgG modulate the immune system?

Key Points

  • Intravenous immunoglobulin (IVIG) therapy can suppress a wide variety of autoimmune and chronic inflammatory diseases.

  • Both F(ab′)2- and Fc-dependent mechanisms have been suggested to be involved in the immunomodulatory effect of IVIG preparations.

  • F(ab′)2-dependent mechanisms may require the presence within IVIG preparations of cytotoxic antibodies, anti-idiotypic antibodies, immunomodulatory antibodies and antibodies that can scavenge activated complement components.

  • Fc-dependent mechanisms of IVIG activity are operative in mice and humans and may include the blockade of activating Fcγ receptors (FcγRs) or of the neonatal Fc receptor (FcRn), the expansion of regulatory T cell populations, the upregulation of the inhibitory receptor FcγRIIB and the modulation of dendritic cell activity.

  • Glycosylation of the IgG Fc fragment has been shown to be crucial for the anti-inflammatory activity of IVIG in several mouse models.

  • SIGNR1 (DC-SIGN-related protein 1) and its human counterpart DC-SIGN (DC-specific ICAM3-grabbing non-integrin) may represent novel, glycosylation-specific receptors for the IgG Fc region and are crucial for the glycosylation-dependent pathway of IVIG activity.

Abstract

Intravenous immunoglobulin (IVIG) preparations comprise pooled IgG antibodies from the serum of thousands of donors and were initially used as an IgG replacement therapy in immunocompromised patients. Since the discovery, more than 30 years ago, that IVIG therapy can ameliorate immune thrombocytopenia, the use of IVIG preparations has been extended to a wide range of autoimmune and inflammatory diseases. Despite the broad efficacy of IVIG therapy, its modes of action remain unclear. In this Review, we cover the recent insights into the molecular and cellular pathways that are involved in IVIG-mediated immunosuppression, with a particular focus on IVIG as a therapy for IgG-dependent autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The family of mouse and human FcγRs.
Figure 2: F(ab′)2- and Fc-dependent pathways of IVIG activity.
Figure 3: Impact of glycosylation on IgG structure and function.
Figure 4: SIGNR1-dependent pathways of IVIG-mediated immunomodulation.

Similar content being viewed by others

References

  1. Sokos, D. R., Berger, M. & Lazarus, H. M. Intravenous immunoglobulin: appropriate indications and uses in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 8, 117–130 (2002).

    Article  PubMed  Google Scholar 

  2. Bayry, J., Negi, V. S. & Kaveri, S. V. Intravenous immunoglobulin therapy in rheumatic diseases. Nature Rev. Rheumatol. 7, 349–359 (2011).

    Article  CAS  Google Scholar 

  3. Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol. 26, 513–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Prins, C., Gelfand, E. W. & French, L. E. Intravenous immunoglobulin: properties, mode of action and practical use in dermatology. Acta Derm. Venereol. 87, 206–218 (2007).

    CAS  PubMed  Google Scholar 

  5. Tackenberg, B., Nimmerjahn, F. & Lunemann, J. D. Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J. Clin. Immunol. 30 (Suppl. 1), S65–S69 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Takai, T. Roles of Fc receptors in autoimmunity. Nature Rev. Immunol. 2, 580–592 (2002).

    Article  CAS  Google Scholar 

  7. Hogarth, P. M. & Pietersz, G. A. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nature Rev. Drug Discov. 11, 311–331 (2012).

    Article  CAS  Google Scholar 

  8. Nimmerjahn, F. & Ravetch, J. V. The antiinflammatory activity of IgG: the intravenous IgG paradox. J. Exp. Med. 204, 11–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nimmerjahn, F. & Ravetch, J. V. FcγRs in health and disease. Curr. Top. Microbiol. Immunol. 350, 105–125 (2011).

    CAS  PubMed  Google Scholar 

  10. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 5, 981–986 (2004).

    Article  CAS  Google Scholar 

  11. Nimmerjahn, F. & Ravetch, J. V. Fc γ receptors as regulators of immune responses. Nature Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  Google Scholar 

  12. Baudino, L. et al. Differential contribution of three activating IgG Fc receptors (FcγRI, FcγRIII, and FcγRIV) to IgG2a- and IgG2b-induced autoimmune hemolytic anemia in mice. J. Immunol. 180, 1948–1953 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Beers, S. A., Cragg, M. S. & Glennie, M. J. Complement: help or hindrance? Blood 114, 5567–5568; author reply 5568 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Beers, S. A. et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 115, 5191–5201 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Biburger, M. et al. Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo. Immunity 35, 932–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Clynes, R. & Ravetch, J. V. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3, 21–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Fossati-Jimack, L. et al. Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcγ receptor III. J. Exp. Med. 191, 1293–1302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamaguchi, Y., Xiu, Y., Komura, K., Nimmerjahn, F. & Tedder, T. F. Antibody isotype-specific engagement of Fc γ receptors regulates B lymphocyte depletion during CD20 immunotherapy. J. Exp. Med. 203, 743–753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hogarth, P. M. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr. Opin. Immunol. 14, 798–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kaneko, Y., Nimmerjahn, F., Madaio, M. P. & Ravetch, J. V. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J. Exp. Med. 203, 789–797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nimmerjahn, F., Anthony, R. M. & Ravetch, J. V. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc. Natl Acad. Sci. USA 104, 8433–8437 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J. V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Nimmerjahn, F. & Ravetch, J. V. Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310, 1510–1512 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Ravetch, J. V. & Clynes, R. A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16, 421–432 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Sylvestre, D. et al. Immunoglobulin G-mediated inflammatory responses develop normally in complement-deficient mice. J. Exp. Med. 184, 2385–2392 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sylvestre, D. L. & Ravetch, J. V. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265, 1095–1098 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J. V. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994). References 25–27 show that IgG-dependent inflammation is largely independent of the classical complement pathway.

    Article  CAS  PubMed  Google Scholar 

  28. Uchida, J. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199, 1659–1669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Azeredo da Silveira, S. et al. Complement activation selectively potentiates the pathogenicity of the IgG2b and IgG3 isotypes of a high affinity anti-erythrocyte autoantibody. J. Exp. Med. 195, 665–672 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Syed, S. N. et al. Both FcγRIV and FcγRIII are essential receptors mediating type II and type III autoimmune responses via FcRγ-LAT-dependent generation of C5a. Eur. J. Immunol. 39, 3343–3356 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Baumann, U. et al. A codominant role of Fc γ RI/III and C5aR in the reverse Arthus reaction. J. Immunol. 164, 1065–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Banda, N. K. et al. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J. Immunol. 188, 1469–1478 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Konrad, S. et al. Phosphoinositide 3-kinases γ and δ, linkers of coordinate C5a receptor-Fcγ receptor activation and immune complex-induced inflammation. J. Biol. Chem. 283, 33296–33303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shushakova, N. et al. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease. J. Clin. Invest. 110, 1823–1830 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skokowa, J. et al. Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G α i2 activation that controls C5aR and Fc receptor cooperation. J. Immunol. 174, 3041–3050 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Tsuboi, N. et al. Regulation of human neutrophil Fcγ receptor IIa by C5a receptor promotes inflammatory arthritis in mice. Arthritis Rheum. 63, 467–478 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willcocks, L. C., Smith, K. G. & Clatworthy, M. R. Low-affinity Fcγ receptors, autoimmunity and infection. Expert Rev. Mol. Med. 11, e24 (2009).

    Article  PubMed  Google Scholar 

  38. Nimmerjahn, F. et al. FcγRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo. Proc. Natl Acad. Sci. USA 107, 19396–19401 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Otten, M. A. et al. Experimental antibody therapy of liver metastases reveals functional redundancy between FcγRI and FcγRIV. J. Immunol. 181, 6829–6836 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Musolino, A. et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Weng, W. K., Negrin, R. S., Lavori, P. & Horning, S. J. Immunoglobulin G Fc receptor FcγRIIIa 158 V/F polymorphism correlates with rituximab-induced neutropenia after autologous transplantation in patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 28, 279–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Clarkson, S. B. et al. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc γ-receptor antibody. N. Engl. J. Med. 314, 1236–1239 (1986). This study provides the first direct evidence in humans that FcγRs are crucial for autoantibody-dependent platelet depletion.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar, V. et al. Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. J. Clin. Invest. 116, 512–520 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daeron, M. & Lesourne, R. Negative signaling in Fc receptor complexes. Adv. Immunol. 89, 39–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996). This is the key study that demonstrated for the first time that FcγRIIB sets a threshold on B cells and innate immune effector cells.

    Article  CAS  PubMed  Google Scholar 

  47. Bolland, S. & Ravetch, J. V. Inhibitory pathways triggered by ITIM-containing receptors. Adv. Immunol. 72, 149–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Lehmann, B. et al. FcγRIIB: a modulator of cell activation and humoral tolerance. Expert Rev. Clin. Immunol. 8, 243–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Baerenwaldt, A. et al. Fcγ receptor IIB (FcγRIIB) maintains humoral tolerance in the human immune system in vivo. Proc. Natl Acad. Sci. USA 7 Nov 2011 (doi:10.1073/pnas.1111810108).

  50. Mackay, M. et al. Selective dysregulation of the FcγIIB receptor on memory B cells in SLE. J. Exp. Med. 203, 2157–2164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tackenberg, B. et al. Impaired inhibitory Fc γ receptor IIB expression on B cells in chronic inflammatory demyelinating polyneuropathy. Proc. Natl Acad. Sci. USA 106, 4788–4792 (2009). This is the first demonstration that IVIG infusion results in the upregulation of FcγRIIB in humans.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Willcocks, L. C. et al. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 107, 7881–7885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nature Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kono, H. et al. FcγRIIB Ile232Thr transmembrane polymorphism associated with human systemic lupus erythematosus decreases affinity to lipid rafts and attenuates inhibitory effects on B cell receptor signaling. Hum. Mol. Genet. 14, 2881–2892 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nature Immunol. 8, 419–429 (2007). References 54 and 55 demonstrate that an allelic variant of FcγRIIB is functionally impaired.

    Article  CAS  Google Scholar 

  56. Ballow, M. Primary immunodeficiency disorders: antibody deficiency. J. Allergy Clin. Immunol. 109, 581–591 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Schaub, A. et al. Dimeric IVIG contains natural anti-Siglec-9 autoantibodies and their anti-idiotypes. Allergy 66, 1030–1037 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Jandus, C., Simon, H. U. & von Gunten, S. Targeting siglecs—a novel pharmacological strategy for immuno- and glycotherapy. Biochem. Pharmacol. 82, 323–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Gelfand, E. W. Differences between IGIV products: impact on clinical outcome. Int. Immunopharmacol. 6, 592–599 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Dolman, C., Thorpe, S. J. & Thorpe, R. Enhanced efficacy of anti-D immunoglobulin for treating ITP is not explained by higher immunoglobulin polymer content. Biologicals 29, 75–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Cines, D. B. & Bussel, J. B. How I treat idiopathic thrombocytopenic purpura (ITP). Blood 106, 2244–2251 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Negi, V. S. et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J. Clin. Immunol. 27, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Imbach, P. et al. High-dose intravenous γglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1, 1228–1231 (1981).

    Article  CAS  PubMed  Google Scholar 

  64. Fehr, J., Hofmann, V. & Kappeler, U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous γ globulin. N. Engl. J. Med. 306, 1254–1258 (1982). References 63 and 64 provided the first in vivo evidence that IVIG can suppress ITP.

    Article  CAS  PubMed  Google Scholar 

  65. Dalakas, M. C. Clinical trials in CIDP and chronic autoimmune demyelinating polyneuropathies. J. Peripher. Nerv. Syst. 17 (Suppl. 2), 34–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Newburger, J. W. et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Circulation 110, 2747–2771 (2004).

    Article  PubMed  Google Scholar 

  67. Imbach, P. Treatment of immune thrombocytopenia with intravenous immunoglobulin and insights for other diseases. A historical review. Swiss Med. Wkly 142, W13593 (2012).

    PubMed  Google Scholar 

  68. Hartung, H. P. et al. Clinical applications of intravenous immunoglobulins (IVIg)—beyond immunodeficiencies and neurology. Clin. Exp. Immunol. 158 (Suppl. 1), 23–33 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson, D. et al. Guidelines on the use of intravenous immune globulin for hematologic conditions. Transfus. Med. Rev. 21, S9–S56 (2007).

    Article  PubMed  Google Scholar 

  70. Ephrem, A. et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111, 715–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. De Groot, A. S. et al. Activation of natural regulatory T cells by IgG Fc-derived peptide “Tregitopes”. Blood 112, 3303–3311 (2008). References 70 and 71 demonstrate that IVIG can expand regulatory T cell populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ballow, M. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J. Allergy Clin. Immunol. 127, 315–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Marchalonis, J. J. et al. Human autoantibodies reactive with synthetic autoantigens from T-cell receptor β chain. Proc. Natl Acad. Sci. USA 89, 3325–3329 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Prasad, N. K. et al. Therapeutic preparations of normal polyspecific IgG (IVIg) induce apoptosis in human lymphocytes and monocytes: a novel mechanism of action of IVIg involving the Fas apoptotic pathway. J. Immunol. 161, 3781–3790 (1998).

    CAS  PubMed  Google Scholar 

  75. Rossi, F. & Kazatchkine, M. D. Antiidiotypes against autoantibodies in pooled normal human polyspecific Ig. J. Immunol. 143, 4104–4109 (1989).

    CAS  PubMed  Google Scholar 

  76. Vassilev, T. et al. Antibodies to the CD5 molecule in normal human immunoglobulins for therapeutic use (intravenous immunoglobulins, IVIg). Clin. Exp. Immunol. 92, 369–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vassilev, T. L. et al. Inhibition of cell adhesion by antibodies to Arg-Gly-Asp (RGD) in normal immunoglobulin for therapeutic use (intravenous immunoglobulin, IVIg). Blood 93, 3624–3631 (1999).

    CAS  PubMed  Google Scholar 

  78. von Gunten, S. et al. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations. Blood 108, 4255–4259 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. von Gunten, S. & Simon, H. U. Natural anti-Siglec autoantibodies mediate potential immunoregulatory mechanisms: implications for the clinical use of intravenous immunoglobulins (IVIg). Autoimmun. Rev. 7, 453–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. von Gunten, S. et al. Intravenous immunoglobulin contains a broad repertoire of anticarbohydrate antibodies that is not restricted to the IgG2 subclass. J. Allergy Clin. Immunol. 123, 1268–1276.e.15 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. von Gunten, S. et al. Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies. J. Allergy Clin. Immunol. 119, 1005–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Le Pottier, L. et al. Intravenous immunoglobulin and cytokines: focus on tumor necrosis factor family members BAFF and APRIL. Ann. NY Acad. Sci. 1110, 426–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Viard, I. et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282, 490–493 (1998). This study shows that CD95-specific antibodies within the IVIG preparation may be involved in blocking skin-blistering diseases.

    Article  CAS  PubMed  Google Scholar 

  84. Seidling, V., Hoffmann, J. H., Enk, A. H. & Hadaschik, E. N. Analysis of high-dose intravenous immunoglobulin therapy in 16 patients with refractory autoimmune blistering skin disease: high efficacy and no serious adverse events. Acta Derm. Venereol. 16 Oct 2012 (doi:10.2340/00015555-1471).

  85. Altznauer, F., von Gunten, S., Spath, P. & Simon, H. U. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations. J. Allergy Clin. Immunol. 112, 1185–1190 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Kasperkiewicz, M., Schmidt, E. & Zillikens, D. Current therapy of the pemphigus group. Clin. Dermatol. 30, 84–94 (2012).

    Article  PubMed  Google Scholar 

  87. Basta, M., Kirshbom, P., Frank, M. M. & Fries, L. F. Mechanism of therapeutic effect of high-dose intravenous immunoglobulin. Attenuation of acute, complement-dependent immune damage in a guinea pig model. J. Clin. Invest. 84, 1974–1981 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Basta, M. et al. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nature Med. 9, 431–438 (2003). References 87 and 88 demonstrate that the IgG F(ab′) 2 fragment can scavenge activated complement proteins.

    Article  CAS  PubMed  Google Scholar 

  89. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Sheerin, N. S., Springall, T., Abe, K. & Sacks, S. H. Protection and injury: the differing roles of complement in the development of glomerular injury. Eur. J. Immunol. 31, 1255–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Debre, M. et al. Infusion of Fc γ fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 342, 945–949 (1993). This study showed for the first time that the IgG Fc fragment has therapeutic activity in humans in vivo.

    Article  CAS  PubMed  Google Scholar 

  92. Samuelsson, A., Towers, T. L. & Ravetch, J. V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001). This study provides the first evidence that FcγRIIB is required for IVIG activity in mouse ITP.

    Article  CAS  PubMed  Google Scholar 

  93. Song, S., Crow, A. R., Freedman, J. & Lazarus, A. H. Monoclonal IgG can ameliorate immune thrombocytopenia in a murine model of ITP: an alternative to IVIG. Blood 101, 3708–3713 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Anthony, R. M. et al. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008). References 93 and 94 demonstrate that IVIG can be substituted by a monoclonal recombinant IgG preparation in mouse ITP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Crow, A. R., Song, S., Semple, J. W., Freedman, J. & Lazarus, A. H. IVIg inhibits reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity. Br. J. Haematol. 115, 679–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Semple, J. W. et al. Intravenous immunoglobulin prevents murine antibody-mediated acute lung injury at the level of neutrophil reactive oxygen species (ROS) production. PLoS ONE 766, e31357 (2012).

    Article  CAS  Google Scholar 

  97. Hansen, R. J. & Balthasar, J. P. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood 100, 2087–2093 (2002).

    CAS  PubMed  Google Scholar 

  98. Vieira, P. & Rajewsky, K. The half-lives of serum immunoglobulins in adult mice. Eur. J. Immunol. 18, 313–316 (1988).

    Article  CAS  PubMed  Google Scholar 

  99. Junghans, R. P. & Anderson, C. L. The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl Acad. Sci. USA 93, 5512–5516 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hansen, R. J. & Balthasar, J. P. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb. Haemost. 88, 898–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Li, N. et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Invest. 115, 3440–3450 (2005). This study shows that FcRn is crucial for IVIG activity in a mouse model of bullous pemphigoid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006). This is the first demonstration that IgG glycosylation and terminal sialic acid residues are crucial for IVIG activity in mice (see also reference 103).

    Article  CAS  PubMed  Google Scholar 

  103. Schwab, I., Biburger, M., Kronke, G., Schett, G. & Nimmerjahn, F. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur. J. Immunol. 42, 826–830 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J. Biol. Chem. 276, 6591–6604 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Crow, A. R., Suppa, S. J., Chen, X., Mott, P. J. & Lazarus, A. H. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood 118, 6403–6406 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Siragam, V. et al. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J. Clin. Invest. 115, 155–160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Clarkson, S. B. et al. Blockade of clearance of immune complexes by an anti-Fc γ receptor monoclonal antibody. J. Exp. Med. 164, 474–489 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Soubrane, C. et al. Biologic response to anti-CD16 monoclonal antibody therapy in a human immunodeficiency virus-related immune thrombocytopenic purpura patient. Blood 81, 15–19 (1993).

    CAS  PubMed  Google Scholar 

  109. Crow, A. R. & Lazarus, A. H. The mechanisms of action of intravenous immunoglobulin and polyclonal anti-D immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus. Med. Rev. 22, 103–116 (2008).

    Article  PubMed  Google Scholar 

  110. Crow, A. R. et al. Amelioration of murine immune thrombocytopenia by CD44 antibodies: a potential therapy for ITP? Blood 117, 971–974 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Teeling, J. L. et al. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 98, 1095–1099 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Park-Min, K. H. et al. FcγRIII-dependent inhibition of interferon-γ responses mediates suppressive effects of intravenous immune globulin. Immunity 26, 67–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Tremblay, T., Pare, I. & Bazin, R. Immunoglobulin G dimers and immune complexes are dispensable for the therapeutic efficacy of intravenous immune globulin in murine immune thrombocytopenia. Transfusion 7 Jun 2012 (doi:10.1111/j.1537-2995.2012.03725.x). This study demonstrates that IgG dimers cannot account for the anti-inflammatory activity of IVIG in mice.

  114. Atrah, H. I. Monoclonal anti-D is not effective in the treatment of chronic autoimmune thrombocytopenic purpura. Transfusion 37, 1102 (1997).

    Article  Google Scholar 

  115. Godeau, B. et al. Treatment of chronic autoimmune thrombocytopenic purpura with monoclonal anti-D. Transfusion 36, 328–330 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Bruhns, P., Samuelsson, A., Pollard, J. W. & Ravetch, J. V. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity 18, 573–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Crow, A. R. et al. IVIg-mediated amelioration of murine ITP via FcγRIIB is independent of SHIP1, SHP-1, and Btk activity. Blood 102, 558–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Crow, A. R., Song, S., Siragam, V. & Lazarus, A. H. Mechanisms of action of intravenous immunoglobulin in the treatment of immune thrombocytopenia. Pediatr. Blood Cancer 47, 710–713 (2006).

    Article  PubMed  Google Scholar 

  119. Schwab, I. et al. B cells and CD22 are dispensable for the immediate antiinflammatory activity of intravenous immunoglobulins in vivo. Eur. J. Immunol. 42, 3302–3309 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Siragam, V. et al. Intravenous immunoglobulin ameliorates ITP via activating Fc γ receptors on dendritic cells. Nature Med. 12, 688–692 (2006). In this study, the authors provide evidence that FcγRIIB is not required during IVIG-dependent priming but rather is needed during the effector phase.

    Article  CAS  PubMed  Google Scholar 

  121. Huang, H. S., Sun, D. S., Lien, T. S. & Chang, H. H. Dendritic cells modulate platelet activity in IVIg-mediated amelioration of ITP in mice. Blood 116, 5002–5009 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Leontyev, D., Katsman, Y. & Branch, D. R. Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcγ receptor for the amelioration of experimental ITP. Blood 119, 5261–5264 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Anthony, R. M., Kobayashi, T., Wermeling, F. & Ravetch, J. V. Intravenous γglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011). The authors demonstrate for the first time that cytokines such as IL-4 and IL-33 are involved in the anti-inflammatory pathway of IVIG activity in a mouse arthritis model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Brownlie, R. J. et al. Distinct cell-specific control of autoimmunity and infection by FcγRIIb. J. Exp. Med. 205, 883–895 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McGaha, T. L., Sorrentino, B. & Ravetch, J. V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 307, 590–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Jacobi, C. et al. Exposure of NK cells to intravenous immunoglobulin induces IFNγ release and degranulation but inhibits their cytotoxic activity. Clin. Immunol. 133, 393–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Arnold, J. N., Wormald, M. R., Sim, R. B., Rudd, P. M. & Dwek, R. A. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Stadlmann, J. et al. A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics 9, 4143–4153 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Kasermann, F. et al. Analysis and functional consequences of increased Fab-sialylation of intravenous immunoglobulin (IVIG) after lectin fractionation. PLoS ONE 766, e37243 (2012).

    Article  CAS  Google Scholar 

  130. Guhr, T. et al. Enrichment of sialylated IgG by lectin fractionation does not enhance the efficacy of immunoglobulin G in a murine model of immune thrombocytopenia. PLoS ONE 666, e21246 (2011).

    Article  CAS  Google Scholar 

  131. Stadlmann, J., Pabst, M. & Altmann, F. Analytical and functional aspects of antibody sialylation. J. Clin. Immunol. 30 (Suppl. 1), 15–19 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  132. Ferrara, C. et al. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc. Natl Acad. Sci. USA 108, 12669–12674 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Ferrara, C., Stuart, F., Sondermann, P., Brunker, P. & Umana, P. The carbohydrate at FcγRIIIa Asn-162. An element required for high affinity binding to non-fucosylated IgG glycoforms. J. Biol. Chem. 281, 5032–5036 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Mizushima, T. et al. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells 16, 1071–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N. & Raju, T. S. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol. Immunol. 44, 1524–1534 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  137. van de Geijn, F. E. et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res. Ther. 11, R193 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dube, R. et al. Agalactosyl IgG in inflammatory bowel disease: correlation with C-reactive protein. Gut 31, 431–434 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bond, A., Cooke, A. & Hay, F. C. Glycosylation of IgG, immune complexes and IgG subclasses in the MRL-lpr/lpr mouse model of rheumatoid arthritis. Eur. J. Immunol. 20, 2229–2233 (1990).

    Article  CAS  PubMed  Google Scholar 

  140. Mizuochi, T., Hamako, J., Nose, M. & Titani, K. Structural changes in the oligosaccharide chains of IgG in autoimmune MRL/Mp-lpr/lpr mice. J. Immunol. 145, 1794–1798 (1990).

    CAS  PubMed  Google Scholar 

  141. Nakajima, S. et al. Functional analysis of agalactosyl IgG in inflammatory bowel disease patients. Inflamm. Bowel Dis. 17, 927–936 (2011). References 136–141 show that the sialylation and galactosylation of serum IgG can change dramatically during inflammation, infection and pregnancy.

    Article  PubMed  Google Scholar 

  142. Jellusova, J. & Nitschke, L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front. Immunol. 2, 96 (2011).

    PubMed  Google Scholar 

  143. Pillai, S., Netravali, I. A., Cariappa, A. & Mattoo, H. Siglecs and immune regulation. Annu. Rev. Immunol. 30, 357–392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Crocker, P. R. & Redelinghuys, P. Siglecs as positive and negative regulators of the immune system. Biochem. Soc. Trans. 36, 1467–1471 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Seite, J. F. et al. IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood 116, 1698–1704 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Gonzalez, S. F. et al. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunol. 11, 427–434 (2010).

    Article  CAS  Google Scholar 

  148. Coelho, V. et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc. Natl Acad. Sci. USA 107, 18587–18592 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Crow, A. R., Song, S., Semple, J. W., Freedman, J. & Lazarus, A. H. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood 109, 155–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Leontyev, D. et al. Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin. Transfusion 52, 1799–1805 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Nikolova, K. A., Tchorbanov, A. I., Djoumerska-Alexieva, I. K., Nikolova, M. & Vassilev, T. L. Intravenous immunoglobulin up-regulates the expression of the inhibitory FcγIIB receptor on B cells. Immunol. Cell Biol. 87, 529–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. & Anderton, S. M. B cells regulate autoimmunity by provision of IL-10. Nature Immunol. 3, 944–950 (2002).

    Article  CAS  Google Scholar 

  153. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity. 24, 19–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Rudge, E. U., Cutler, A. J., Pritchard, N. R. & Smith, K. G. Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B cell suppression. J. Exp. Med. 195, 1079–1085 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Brighton, T. A., Evans, S., Castaldi, P. A., Chesterman, C. N. & Chong, B. H. Prospective evaluation of the clinical usefulness of an antigen-specific assay (MAIPA) in idiopathic thrombocytopenic purpura and other immune thrombocytopenias. Blood 88, 194–201 (1996).

    CAS  PubMed  Google Scholar 

  156. Olsson, B. et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nature Med. 9, 1123–1124 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Podolanczuk, A., Lazarus, A. H., Crow, A. R., Grossbard, E. & Bussel, J. B. Of mice and men: an open-label pilot study for treatment of immune thrombocytopenic purpura by an inhibitor of Syk. Blood 113, 3154–3160 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to apologize to all those colleagues whose important contributions could not be cited directly. This work was supported by grants from the German Research Foundation (SFB 643, SPP1468, GK1660 and FOR832), the Bavarian Genome Research Network, the Sander Foundation and the Collaboration for AIDS Vaccine Discovery network within the Bill and Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk Nimmerjahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Falk Nimmerjahn's homepage

Glossary

Rheumatoid arthritis

An immune disorder that is characterized by symmetrical polyarthritis, which often progresses to crippling deformation after years of synovitis. It is associated with systemic immune activation and with the presence in the peripheral blood of acute-phase reactants and of rheumatoid factor (antibodies specific for IgG), which forms immune complexes that are deposited in many tissues.

Systemic lupus erythematosus

(SLE). An autoimmune disease in which autoantibodies specific for DNA, RNA or proteins associated with nucleic acids form immune complexes that damage small blood vessels, especially in the kidney. Despite extensive study, this disease is still not fully understood and differs from other autoimmune diseases in several respects.

Immunothrombocytopenia

(ITP). A disease in which autoantibodies lead to an abnormal drop in circulating platelet numbers. Platelet production may be normal or impaired, as the disorder can be caused by antibodies specific for megakaryocytes or by autoantibodies specific for platelets themselves.

Autoimmune haemolytic anaemia

(AIHA). A form of anaemia caused by autoantibodies specific for surface antigens on red blood cells, which become targets for destruction by complement and by erythrophagocytosis.

Chronic inflammatory demyelinating polyneuropathy

(CIDP). An autoimmune disease in which T cells and autoantibodies specific for peripheral nervous tissue trigger the demyelination of nerve cells, resulting in muscle weakness and paralysis.

Cytokine-release syndrome

(Also known as a cytokine storm). A sudden surge in the circulating levels of pro-inflammatory cytokines, such as interleukin-1, interleukin-6, tumour necrosis factor and interferon-γ.

Kawasaki's disease

(Also known as mucocutaneous lymph node syndrome). An acute, self-limited vasculitis of infants and the leading cause of acquired heart disease among children in developed countries.

Guillain–Barré syndrome

A possible autoimmune disease that is characterized generally by acute muscle weakness and the absence of reflexes, possibly owing to the production of autoantibodies specific for gangliosides on neuronal cells following Campylobacter jejuni enteritis.

Bullous pemphigoid

An autoimmune disorder characterized by the deposition of autoantibodies specific for components of the basement-membrane zone at the dermal–epidermal junction, leading to inflammation and blister formation.

Anti-idiotypic antibodies

Antibodies that are specific for the antigen-specific binding site of an immunoglobulin or a T cell receptor and therefore may compete with the antigen for binding.

Anaphylatoxins

The pro-inflammatory complement activation fragments C3a and C5a. These molecules mediate an inflammatory response through cell activation to induce, for example, chemotaxis and histamine release.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, I., Nimmerjahn, F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system?. Nat Rev Immunol 13, 176–189 (2013). https://doi.org/10.1038/nri3401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing