Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spores of Phytophthora: weapons of the plant destroyer

Key Points

  • Although many researchers would consider oomycetes as fungi, officially oomycetes such as the genus Phytophthora are classified taxonomically in the Straminipilia kingdom, with diatoms and brown algae their nearest taxonomic neighbours.

  • The phytopathogenic Phytophthora are economically significant pathogens, with Phytophthora infestans, the causative agent of potato blight, responsible for an estimated US$5 billion of damage each year.

  • New techniques for genetic, genomic and proteomic analyses were initially applied to more tractable mycological systems such as the basidiomycetes and ascomycetes. However, in the past decade great advances have been made in developing these analytical tools for oomycetes, with Phytophthora leading the way.

  • In this article, the authors provide an overview of the results obtained in molecular studies on Phytophthora spores from the past 4 or 5 years. Several spore-specific genes have now been identified. Further analysis of the different stages of the Phytophthora life cycle might eventually lead to the development of effective strategies for controlling Phytophthora disease.

Abstract

Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Course of infection by Phytophthora infestans.
Figure 2: Stages of the spore cycles of Phytophthora infestans.
Figure 3: Promoter activation during asexual sporulation and germination.
Figure 4: Sex in Phytophthora.

Similar content being viewed by others

References

  1. Roncal, T. & Ugalde, U. Conidiation induction in Penicillium. Res. Microbiol. 154, 539–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Williams, H. P. & Harwood, A. J. Cell polarity and Dictyostelium development. Curr. Opin. Microbiol. 6, 621–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Calvo, A. M., Wilson, R. A., Bok, J. W. & Keller, N. P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66, 447–459 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Large, E. C. The Advance of the Fungi (Dover, New York, 1962). A wonderful volume filled with an entertaining history of mycology and plant pathology, including several chapters on P. infestans and the late blight disease.

    Google Scholar 

  6. Duncan, J. Phytophthora: an abiding threat to our crops. Microbiol. Today 26, 114–116 (1999).

    Google Scholar 

  7. Erwin, D. C. & Ribeiro, O. K. Phytophthora Diseases Worldwide (APS Press, St Paul, Minnesota, 1996).

    Google Scholar 

  8. Rizzo, D. M., Garbelotto, M., Davidson, J. M., Slaughter, G. W. & Koike, S. T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 86, 205–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ebbole, D. J. Morphogenesis and vegetative differentiation in filamentous fungi. J. Genet. 75, 361–374 (1996).

    Article  Google Scholar 

  10. Kues, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Money, N. P. Why oomycetes have not stopped being fungi. Mycol. Res. 102, 767–768 (1998).

    Article  Google Scholar 

  12. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Sogin, M. L. & Silberman, J. D. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int. J. Parasitol. 28, 11–20 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Shaw, D. S. in Oosporic Plant Pathogens, A Modern Perspective (ed. Buczacki, S. T.) 85–121 (Academic Press, London, 1983).

    Google Scholar 

  15. Cvitanich, C. & Judelson, H. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42, 228–235 (2003).

    CAS  PubMed  Google Scholar 

  16. Vijn, I. & Govers, F. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4, 456–467 (2003).

    Article  Google Scholar 

  17. Judelson, H. S., Tyler, B. M. & Michelmore, R. W. Transformation of the oomycete pathogen, Phytophthora infestans. Mol. Plant Microbe Interact. 4, 602–607 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Kamoun, S., Van West, P., Vleshouwers, V. G. A. A., De Groot, K. E. & Govers, F. Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10, 1413–1425 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Whisson, S. C. et al. Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library. Mol. Genet. Genomics 266, 289–295 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Randall, T. A., Ah Fong, A. & Judelson, H. Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genet. Biol. 38, 75–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Randall, T. A. et al. Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol. Plant Microbe Interact. (in the press). The most recent characterization of the Phytophthora transcriptome, including links to databases of ESTs from P. infestans and P. sojae.

  22. Kamoun, S., Hraber, P., Sobral, B., Nuss, D. & Govers, F. Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet. Biol. 28, 94–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Qutob, D., Hraber, P. T., Sobral, B. W. S. & Gijzen, M. Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiol. 123, 243–253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Skalamera, D., Wasson, A. P. & Hardham, A. R. Genes expressed in zoospores of Phytophthora nicotianae. Mol. Genet. Genomics 270, 549–557 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Shan, W. -X., Marshall, J. S. & Hardham, A. R. Gene expression in germinated cysts of Phytophthora nicotianae. Mol. Plant Pathol. 5, 317–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Moy, P., Qutob, D., Chapman, B. P., Atkinson, I. & Gijzen, M. Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol. Plant Microbe Interact. 17, 1051–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hardham, A. R. & Hyde, G. J. Asexual sporulation in the oomycetes. Adv. Bot. Res. 24, 353–398 (1997). A comprehensive review on the biology and development of sporangia within the oomycete group, from the perspective of the field's leading cell biologist.

    Article  Google Scholar 

  28. Fry, W. E. Principles of Plant Disease Management (Academic Press, New York, 1982).

    Google Scholar 

  29. Ribeiro, O. K. in Phytophthora: its Biology, Taxonomy, Ecology and Pathology (eds Erwin, D. C., Bartnicki-Garcia, S. & Tsao, P. H.) 55–70 (APS Press, St Paul, Minnesota, 1983).

    Google Scholar 

  30. Aylor, D. E. Spread of plant disease on a continental scale: role of aerial dispersal of pathogens. Ecology 84, 1989–1997 (2003).

    Article  Google Scholar 

  31. Gisi, U., Schwinn, F. J. & Oertli, J. J. Dynamics of indirect germination in Phytophthora cactorum sporangia. Trans. Br. Mycol. Soc. 72, 437–446 (1979).

    Article  Google Scholar 

  32. Ambikapathy, J., Marshall, J. S., Hocart, C. H. & Hardham, A. R. The role of proline in osmoregulation in Phytophthora nicotianae. Fungal Genet. Biol. 35, 287–299 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Tyler, B. M. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40, 137–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Deacon, J. W. & Donaldson, S. P. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97, 1153–1171 (1993). A description of the physiology of zoospore taxis and germ-tube tropism, with emphasis on signalling by calcium and other ions.

    Article  CAS  Google Scholar 

  35. Morris, P. F. & Ward, E. W. B. Chemoattraction of zoospores of the soybean pathogen Phytophthora sojae by isoflavones. Physiol. Mol. Plant Pathol. 40, 17–22 (1992).

    Article  CAS  Google Scholar 

  36. Reid, B., Morris, B. M. & Gow, N. A. R. Calcium-dependent, genus-specific, autoaggregation of zoospores of phytopathogenic fungi. Exp. Mycol. 19, 202–213 (1995).

    Article  CAS  Google Scholar 

  37. van West, P., et al. Oomycete plant pathogens use electric fields to target roots. Mol. Plant Microbe Interact. 15, 790–798 (2002). An examination of the relative roles of electrotaxis and chemotaxis in directing zoospores of different oomycete species to plant roots.

    Article  CAS  PubMed  Google Scholar 

  38. Morris, B. M. & Gow, N. A. R. Mechanism of electrotaxis of zoospores of phytopathogenic fungi. Phytopathology 83, 877–882 (1993).

    Article  CAS  Google Scholar 

  39. Hardham, A. R. The cell biology behind Phytophthora pathogenicity. Australas. Plant Pathol. 30, 91–98 (2001).

    Article  Google Scholar 

  40. Bircher, U. & Hohl, H. R. Environmental signalling during induction of appressorium formation in Phytophthora. Mycol. Res. 101, 395–402 (1997).

    Article  Google Scholar 

  41. Hohl, H. R. & Suter, E. Host–parasite interfaces in a resistant and a susceptible cultivar of Solanum tuberosum inoculated with Phytophthora infestans: leaf tissue. Can. J. Bot. 54, 1956–1970 (1976).

    Article  Google Scholar 

  42. Carlile, M. J. in Phytophthora: its Biology, Taxonomy, Ecology and Pathology (eds Erwin, D. C., Bartnicki-Garcia, S. & Tsao, P. H.) 95–107 (APS Press, St Paul, Minnesota, 1983).

    Google Scholar 

  43. Ristaino, J. B. & Gumpertz, M. L. New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu. Rev. Phytopathol. 38, 541–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Mizubuti, E. S. G., Aylor, D. E. & Fry, W. E. Survival of Phytophthora infestans sporangia exposed to solar radiation. Phytopathology 90, 78–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Warren, R. C. & Colhoun, J. Viability of sporangia of Phytophthora infestans in relation to drying. Trans. Br. Mycol. Soc. 64, 73–78 (1975).

    Article  Google Scholar 

  46. Sleigh, M. A. Cilia and Flagella (Academic Press, New York, 1962).

    Google Scholar 

  47. Dick, M. W. Fungi, flagella and phylogeny. Mycol. Res. 101, 385–394 (1997).

    Article  Google Scholar 

  48. de Bary, A. Comparative Morphology and Biology of the Fungi (Clarendon Press, Oxford, 1887).

    Google Scholar 

  49. Tani, S., Yatzkan, E. & Judelson, H. S. Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol. Plant Microbe Interact. 17, 330–337 (2004). A macroarray study of zoospore-specific gene expression, which integrates the expression of the genes with calcium and phospholipid signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  50. Kim, K. S. & Judelson, H. S. Sporangia-specific gene expression in the oomyceteous phytopathogen Phytophthora infestans. Eukaryot. Cell 2, 1376–1385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shepherd, S. J., Van West, P. & Gow, N. A. R. Proteomic analysis of asexual development of Phytophthora palmivora. Mycol. Res. 107, 395–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Latijnhouwers, M. & Govers, F. A Phytophthora infestans G-protein β-subunit is involved in sporangium formation. Eukaryot. Cell 2, 971–977 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Latijnhouwers, M., Ligterink, W., Vleeshouwers, V. G. A. A., Van West, P. & Govers, F. A G-α subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol. Microbiol. 51, 925–936 (2004). Shows how gene silencing can be used to dissect signalling mechanisms in the spore pathway, and includes pictures and videos of normal and mutant patterns of swimming and chemotaxis.

    Article  CAS  PubMed  Google Scholar 

  54. Marshall, J. S., Wilkinson, J. M., Moore, T. & Hardham, A. R. Structure and expression of the genes encoding proteins resident in large peripheral vesicles of Phytophthora cinnamomi zoospores. Protoplasma 215, 226–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Fabritius, A. L. & Judelson, H. S. A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. Mol. Plant Microbe Interact. 16, 926–935 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Goernhardt, B., Rouhara, I. & Schmelzer, E. Cyst germination proteins of the potato pathogen Phytophthora infestans share homology with human mucins. Mol. Plant Microbe Interact. 13, 32–42 (2000).

    Article  Google Scholar 

  57. Lagow, E., DeSouza, M. M. & Carson, D. D. Mammalian reproductive tract mucins. Hum. Reprod. Update 5, 280–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Judelson, H. S. & Roberts, S. Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot. Cell 1, 687–695 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ah Fong, A. & Judelson, H. S. Cell-cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol. Microbiol. 50, 487–494 (2003). An example of the use of gene silencing to study a sporulation-associated gene, and how reporter genes can help study patterns of development.

    Article  PubMed  CAS  Google Scholar 

  60. Tian, Q. E. A. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics 3, 960–969 (2005).

    Article  CAS  Google Scholar 

  61. Griffin, T. J. et al. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Penington, C. J., Iser, J. R., Grant, B. R. & Gayler, K. R. Role of RNA and protein synthesis in stimulated germination of zoospores of the pathogenic fungus Phytophthora palmivora. Exp. Mycol. 13, 158–168 (1989).

    Article  CAS  Google Scholar 

  63. Clark, M. C., Melanson, D. L. & Page, O. T. Purine metabolism and differential inhibition of spore germination in Phytophthora infestans. Can. J. Microbiol. 24, 1032–1038 (1978).

    Article  CAS  PubMed  Google Scholar 

  64. Maltese, C. E., Conigliaro, G. & Shaw, D. S. The development of sporangia of Phytophthora infestans. Mycol. Res. 99, 1175–1181 (1995). An analysis of sporangia development, with emphasis on nuclear behaviour. Also speculates on host and environmental factors that coordinate daily cycles of sporulation that occur in natural pathosystems.

    Article  Google Scholar 

  65. Cvitanich, C. & Judelson, H. S. A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot. Cell 2, 465–473 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tani, S., Kim, K. S. & Judelson, H. S. A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet. Biol. (in the press).

  67. Axelrod, D. E., Gealt, M. & Pastushok, M. Gene control of developmental competence in Aspergillus nidulans. Dev. Biol. 34, 9–15 (1973).

    Article  CAS  PubMed  Google Scholar 

  68. Kasahara, S. & Nuss, D. L. Targeted disruption of a fungal G-protein β-subunit gene results in increased vegetative growth but reduced virulence. Mol. Plant Microbe Interact. 10, 984–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Parisi, M. & Lin, H. Translational repression: a duet of Nanos and Pumilio. Curr. Biol. 10, R81–R83 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Nakahata, S. et al. Biochemical identification of Xenopus Pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J. Biol. Chem. 276, 20945–20953 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. McCollum, D. & Gould, K. L. Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 11, 89–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Li, L., Ernsting, B. R., Wishart, M. J., Lohse, D. L. & Dixon, J. E. A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J. Biol. Chem. 272, 29403–29406 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Whittaker, S. L., Shattock, R. C. & Shaw, D. S. The duplication cycle and DAPI-DNA contents in nuclei of germinating zoospore cysts of Phytophthora infestans. Mycol. Res. 96, 355–358 (1992).

    Article  CAS  Google Scholar 

  74. Bigot, J. & Boucaud, J. Effects of Ca-signalling inhibitors on short-term cold-acclimation of hydraulic conductivity in roots of Brassica rapa plants. J. Plant Physiol. 157, 7–12 (2000).

    Article  CAS  Google Scholar 

  75. Connolly, M. S., Williams, N., Heckman, C. A. & Morris, P. F. Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet. Biol. 28, 6–11 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Bircher, U. & Hohl, H. R. A role for calcium in appressorium induction in Phytophthora palmivora. Bot. Helv. 109, 55–65 (1999).

    Google Scholar 

  77. Warburton, A. J. & Deacon, J. W. Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen Phytophthora parasitica. Fungal Genet. Biol. 25, 54–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Latijnhouwers, M., Munnik, T. & Govers, F. Phospholipase D in Phytophthora infestans and its role in zoospore encystment. Mol. Plant Microbe Interact. 15, 939–946 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Senchou, V. et al. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell. Mol. Life Sci. 61, 502–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Mitchell, H. J., Kovac, K. A. & Hardham, A. R. Characterization of Phytophthora nicotiana zoospore and cyst membrane proteins. Mycol. Res. 106, 1211–1223 (2002).

    Article  CAS  Google Scholar 

  81. McLeod, A., Smart, C. D. & Fry, W. E. Characterization of 1,3-β-glucanase and 1,3;1,4-β-glucanase genes from Phytophthora infestans. Fungal Genet. Biol. 38, 250–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Stienen, G. J., Kiers, J. L., Bottinelli, R. & Reggiani, C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence. J. Physiol. 493, 503–519 (1996).

    Article  Google Scholar 

  83. Holker, U., Ersek, T. & Hofer, M. Changes in ion fluxes and the energy demand during spore development in Phytophthora infestans. Folio Microbiol. 38, 193–200 (1993).

    Article  Google Scholar 

  84. Bimpong, C. E. Changes in metabolic reserves activities during zoospore motility and cyst germination in Phytophthora palmivora. Can. J. Bot. 53, 1411–1416 (1975).

    Article  CAS  Google Scholar 

  85. Wang, M. C. & Bartnicki-Garcia, S. Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. J. Biol. Chem. 248, 4112–4118 (1973).

    CAS  PubMed  Google Scholar 

  86. Niere, J. O., Griffith, J. M. & Grant, B. R. 31P NMR studies on the effect of phosphite on Phytophthora. J. Gen. Microbiol. 136, 147–156 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Dietrich, S. M. C. Presence of polyphosphate of low molecular weight in Zygomycetes. J. Bacteriol. 127, 1408–1413 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pfyffer, G. E., Pfyffer, B. U. & Rast, D. M. The polyol pattern, chemotaxonomy, and phylogeny of the fungi. Sydowia 39, 160–201 (1986).

    Google Scholar 

  89. Ellington, W. R. Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 63, 289–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Marshall, J. S., Ashton, A. R., Govers, F. & Hardham, A. R. Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi. Curr. Genet. 40, 73–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Fernandez-Pavia, S. P., Grunwald, N. J., Diaz-Valasis, M., Cadena-Hinojosa, M. & Fry, W. E. Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis. 88, 29–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Hermansen, A., Hannukkala, A., Naerstad, R. H. & Brurberg, M. B. Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance, and virulence phenotype. Plant Pathol. 49, 11–22 (2000).

    Article  CAS  Google Scholar 

  93. Hemmes, D. & Bartnicki-Garcia, S. Electron microscopy of gametangial interaction and oospore development in Phytophthora capsici. Arch. Microbiol. 103, 91–112 (1975).

    Article  Google Scholar 

  94. Judelson, H. S., Spielman, L. J. & Shattock, R. C. Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141, 503–512 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fabritius, A. -L. & Judelson, H. S. Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination. Curr. Genet. 32, 60–65 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Van der Lee, T., De Witte, I., Drenth, A., Alfonso, C. & Govers, F. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genet. Biol. 21, 278–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Ah Fong, A. & Judelson, H. S. The haT-like DNA transposon DodoPi resides in a cluster of retro and DNA transposons in the stramenopile Phytophthora infestans. Mol. Gen. Genom. 271, 577–585 (2004).

    Article  CAS  Google Scholar 

  98. Judelson, H. S. Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. Genetics 144, 1005–1013 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Judelson, H. S. Chromosomal heteromorphism linked to the mating type locus of the oomycete Phytophthora infestans. Mol. Gen. Genet. 252, 155–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Chern, L. L., Tang, C. S. & Ko, W. H. Chemical characterization of α hormones of Phytophthora parasitica. Bot. Bull. Acad. Sin. 40, 79–85 (1999).

    CAS  Google Scholar 

  101. Ko, W. H. Hormonal heterothallism and homothallism in Phytophthora. Annu. Rev. Phytopathol. 26, 57–73 (1988).

    Article  Google Scholar 

  102. Judelson, H. S. Expression and inheritance of sexual preference and selfing potential in Phytophthora infestans. Fungal Genet. Biol. 21, 188–197 (1997).

    Article  Google Scholar 

  103. Barksdale, A. W. Inter-thallic sexual reactions in Achlya, a genus of the aquatic fungi. Am. J. Bot. 47, 14–23 (1960).

    Article  Google Scholar 

  104. Groves, C. T. & Ristaino, J. B. Commercial fungicide formulations induce in vitro oospore formation and phenotypic change in mating type in Phytophthora infestans. Phytopathology 90, 1201–1208 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Fabritius, A. -L., Cvitanich, C. & Judelson, H. S. Stage-specific gene expression during sexual development in Phytophthora infestans. Mol. Microbiol. 45, 1057–1066 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Jennings, L. D., Wawrzak, Z., Amorose, D., Schwartz, R. S. & Jordan, D. B. A new potent inhibitor of fungal melanin biosynthesis identified through combinatorial chemistry. Bioorg. Med. Chem. Lett. 9, 2509–2514 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Torto, T. A., Rauser, L. & Kamoun, S. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr. Genet. 40, 385–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Gotesson, A., Marshall, J. S., Jones, D. A. & Hardham, A. R. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol. Plant Microbe Interact. 15, 907–921 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Rose, J. K. C., Ham, K. -S., Darvill, A. G. & Albersheim, P. Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14, 1329–1345 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tian, M., Huitema, E., da Cunha, L., Torto-Alalibo, T. & Kamoun, S. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279, 26370–26377 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues that have helped to develop Phytophthora species into tractable experimental systems. Our work related to the topic has been supported by the US Department of Agriculture National Research Initiative, the National Science Foundation of the United States, Syngenta and the University of California Industry–University Cooperative Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Judelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Howard S. Judelson's laboratory

DEFRA: Phytophthora ramorum

Global Initiative on Late Blight

Molecular Plant Pathology pathogen profile

Phytophthora Functional Genomics Database

US Department of Energy Joint Genome Initiative Phytophthora sequences

The Microbial World: potato blight

Glossary

SAPROPHYTE

An organism that feeds on dead organic matter.

SPORANGIUM

A sac-like structure that is capable of converting its cytoplasm into multiple spores.

ZOOSPORES

Motile, wall-less spores, specialized for dispersal.

OOSPORES

Non-motile, sexual spores.

CHLAMYDOSPORES

Thick-walled asexual reproductive structures that are found in many Phytophthora species, but not Phytophthora infestans.

SPORANGIOPHORE

A specialized hypha that has a sporangium.

CADUCOUS

In caducous species the sporangia can detach from the hypha for dispersal.

STOMATE

An epidermal pore on a leaf or stem that allows the passage of gases and water vapour.

LENTICEL

An opening in the corky skin of plants that enables gas and vapour to move to and from interior tissues.

COENOCYTIC

Non-septate, with nuclei residing in a common cytoplasm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judelson, H., Blanco, F. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3, 47–58 (2005). https://doi.org/10.1038/nrmicro1064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing