Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microbial endemism: does phosphorus limitation enhance speciation?

Abstract

There is increasing evidence for the existence of unique ecosystems that are dominated by locally adapted microbiota which harbour distinct lineages and biological capabilities, much like the macrobiota of Darwin's Galapagos Islands. As a primary example of such a system, we highlight key discoveries from the Cuatro Ciénegas basin in Mexico. We argue that high microbial endemism requires a combination of geographical isolation, long-term continuity and mechanisms for reducing the intensity of horizontal gene transfer (HGT). We also propose that strong phosphorus limitation has an important role in microbial diversification by reducing the intensity of HGT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The influence of phosphorus (P) limitation on horizontal gene transfer (HGT).
Figure 2: The microorganism-dominated ecosystems of the Cuatro Ciénegas basin, Coahuila, Mexico.
Figure 3: Microbial diversity and endemism at the Cuatro Ciénegas basin.

Similar content being viewed by others

References

  1. Ostrowski, E. A., Woods, R. J. & Lenski, R. E. The genetic basis of parallel and divergent phenotypic responses in evolving populations of Escherichia coli. Proc. Biol. Sci. 275, 277–284 (2008).

    Article  CAS  Google Scholar 

  2. Retchless, A. C. & Lawrence, J. G. Temporal fragmentation of speciation in bacteria. Science 317, 1093–1096 (2007).

    Article  CAS  Google Scholar 

  3. Dykhuizen, D. E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Van Leeuwenhoek 73, 25–33 (1998).

    Article  CAS  Google Scholar 

  4. Bass-Becking, L. G. M. Giobiologie of Inleiding Tot de Milieukunde (The Hague, The Netherlands, 1934).

    Google Scholar 

  5. Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).

    Article  CAS  Google Scholar 

  6. Hughes, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).

    Article  Google Scholar 

  7. Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol. Ecol. 48, 57–69 (2004).

    Article  CAS  Google Scholar 

  8. de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003).

    Article  CAS  Google Scholar 

  9. Whitaker, R. J., Grogan, D. W. & Taylor, J. W. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978 (2003).

    Article  CAS  Google Scholar 

  10. Papke, R. T., Ramsing, N. B., Bateson, M. M. & Ward, D. M. Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5, 650–659 (2003).

    Article  CAS  Google Scholar 

  11. Souza, V., Nguyen, T. T., Hudson, R. R., Pinero, D. & Lenski, R. E. Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? Proc. Natl Acad. Sci. USA 89, 8389–8393 (1992).

    Article  CAS  Google Scholar 

  12. Souza, V. & Eguiarte, L. E. Bacteria gone native vs. bacteria gone awry?: plasmidic transfer and bacterial evolution. Proc. Natl Acad. Sci. USA 94, 5501–5503 (1997).

    Article  CAS  Google Scholar 

  13. Clasen, J. L. & Elser, J. J. The effect of host Chlorella NC64a carbon:phosphorus ratio on production of Paramecium Chlorella virus-1. Freshw. Biol. 52, 112–122 (2007).

    Article  CAS  Google Scholar 

  14. Zubkov, M. V. et al. Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environ. Microbiol. 9, 2079–2089 (2007).

    Article  CAS  Google Scholar 

  15. Elser, J. J., Watts, J., Schampel, J. H. & Farmer, J. D. Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. Ecol. Lett. 9, 295–303 (2006).

    Article  Google Scholar 

  16. Minckley, W. L. Three decades near Cuatro Ciénegas, Mexico: photographic documentation and a plea for area conservation. J. Arizona–Nevada Acad. Sci. 26, 89–118 (1992).

    Google Scholar 

  17. McKee, J. W., Jones, N. W. & Long, L. E. Stratigraphy and provenance of strata along the San Marcos Fault, central Coahuila, Mexico. Geol. Soc. Am. Bull. 102, 593–614 (1990).

    Article  Google Scholar 

  18. Souza, V. et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl Acad. Sci. USA 103, 6565–6570 (2006).

    Article  CAS  Google Scholar 

  19. Minckley, T. A. & Jackson, S. T. Ecological stability in a changing world? Reassessment of the palaeoenvironmental history of Cuatrocienegas, Mexico. J. Biogeogr. 35, 188–190 (2008).

    Article  Google Scholar 

  20. Minckley, W. L. in Proc. Desert Fishes Council Vol. XXV (ed. Hendrickson, D. A.) 47–64 (Desert Fishes Council, California,1994).

    Google Scholar 

  21. Stein, B. A., Kutner, L. S. & Adams, J. S. Precious Heritage: the Status of Biodiversity in the United States (Oxford Univ. Press, 2000).

    Google Scholar 

  22. Minckley, W. L. Environments of the Bolson of Cuatro Ciénegas, Coahuila, Mexico (Texas Western Press, El Paso,1969).

    Google Scholar 

  23. Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).

    Article  CAS  Google Scholar 

  24. Cerritos, R., Eguiarte, L., Avitia, M., Siefert, J. & Souza, V. High diversity of previously unknown cultivable species in an oasis of biodiversity in Cuatro Ciénegas, Coahuila, Mexico. FEMS Microbiol. Ecol. (in the press).

  25. Espinosa-Asuar, L. Estructura de las Comunidades de Clonas Ambientales en Cuatro Ciénegas Coahuila. Thesis, Maestría en Ciencias Biomédicas (2005).

    Google Scholar 

  26. Escalante, A. et al. Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol. Ecol. (in the press).

  27. Desnues, C. M. et al. Diversity and evolution of viruses in modern stromatolites and thrombolites. Nature 452, 340–342 (2008).

    Article  CAS  Google Scholar 

  28. Breitbart, M. & Rohwer, F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13, 278–284 (2005).

    Article  CAS  Google Scholar 

  29. Noguez, A. M. et al. Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob. Ecol. Biogeogr. 14, 241–248 (2005).

    Article  Google Scholar 

  30. Horner-Devine, M. C. et al. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88, 1345–1353 (2007).

    Article  Google Scholar 

  31. Cerritos, R. et al. Bacillus coahuilensis sp. nov. a new moderately halophilic species from different pozas in the Cuatro Ciénegas Valley in Coahuila, México. Int. J. Syst. Bacteriol. 58, 919–923 (2008).

    Article  CAS  Google Scholar 

  32. Winsborough, B. in Taxonomy, Phylogeny, and Ecology: Partners in Forwarding our Understanding of Freshwater Diatom Evolution and Ecology (eds Kociolek, P., Theriot, E. & Stevenson, J.) (in the press).

  33. Alcaraz, L. D. et al. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment. Proc. Natl Acad. Sci. USA 105, 5803–5808 (2008).

    Article  CAS  Google Scholar 

  34. Elser, J. J. et al. Response of grazing snails on microbial communities in an ecosystem with living stromatolites. Freshw. Biol. 50, 1826–1835 (2005).

    Article  CAS  Google Scholar 

  35. Elser, J. J. et al. Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw. Biol. 50, 1808–1835 (2005).

    Article  CAS  Google Scholar 

  36. Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton Univ. Press, New Jersey, 2002).

    Google Scholar 

  37. Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Article  Google Scholar 

  38. Haegele, D., Keinfelder, R., Grau, J., Burmeister, E.-G. & Struck, U. Oncoids from the river Alz (southern Germany): tiny ecosystems in a phosphorus-limited environment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237, 378–395 (2006).

    Article  Google Scholar 

  39. Lewis, W. M. Nutrient scarcity as an evolutionary cause of haploidy. Am. Nat. 125, 692–701 (1985).

    Article  Google Scholar 

  40. Van Mooy, B. A. S., Rocap, G., Fredricks, H. F., Evans, C. T. & Devol, A. H. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc. Natl Acad. Sci. USA 103, 8607–8612 (2006).

    Article  CAS  Google Scholar 

  41. Allen, E. E. et al. Genome dynamics in a natural archaeal population. Proc. Natl Acad. Sci. USA 104, 1883–1888 (2007).

    Article  CAS  Google Scholar 

  42. Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nature Rev. Genet. 3, 850–861 (2002).

    Article  CAS  Google Scholar 

  43. Pym, A. S. & Small, P. M. in Evolution of Microbial Pathogens (ed. Siefert, S.) 301–326 (ASM, Washington DC, 2006).

    Book  Google Scholar 

  44. Achtman, M. et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl Acad. Sci. USA 101, 17837–17842 (2004).

    Article  CAS  Google Scholar 

  45. Spiers, A. J., Buckling, A. & Rainey, P. B. The causes of Pseudomonas diversity. Microbiology 146, 2345–2350 (2000).

    Article  CAS  Google Scholar 

  46. Good-Avila, S. V., Souza, V., Gaut, B. S. & Eguiarte, L. E. Timing and rate of speciation in Agave (Agavaceae). Proc. Natl Acad. Sci. USA 103, 9124–9129 (2006).

    Article  CAS  Google Scholar 

  47. Travisano, M. & Rainey, P. B. Studies of adaptive radiation using model microbial systems. Am. Nat. 156, S25–S44 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Breitbart, M. Travisano, L. Falcon, A. Escalante and G. Olmedo who worked with us on the conceptual framework of this paper. This work has been supported by NASA, SEMARNAT/CONACyT CO1-0237, CONACyT 44673Q, CONABIO and AE015. We thank A. Cruz, L. Espinosa-Asuar and M. Kyle for expert technical assistance. The cooperation, logistics and support of CONAP/APFF Cuatro Cienegas, The Nature Conservancy and Pronatura Noreste were paramount for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Souza.

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus coahuilensis

Bacillus halodurans

Bacillus subtilis

Escherichia coli

Geobacillus kaustophilus

Mycobacterium tuberculosis

Oceanobacillus iheyensis

Yersinia pestis

FURTHER INFORMATION

Valeria Souza's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, V., Eguiarte, L., Siefert, J. et al. Microbial endemism: does phosphorus limitation enhance speciation?. Nat Rev Microbiol 6, 559–564 (2008). https://doi.org/10.1038/nrmicro1917

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing