Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development and application of human adult stem or progenitor cell organoids

Key Points

  • The term organoid culture describes a spectrum of culture systems, each with typical applications

  • Human adult stem or progenitor cell organoids are 3D, adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells

  • Human adult stem or progenitor cell organoid cultures have been established for multiple organs and have proven value in the basic study of pathophysiology as well as for clinical applications

  • Development of a renal human adult stem or progenitor cell organoid culture system is feasible and holds great promise for the field of nephrology

  • Potential applications of renal adult stem or progenitor cell organoids include studies of tissue homeostasis and disease, drug screening, cell therapy and bioengineering

Abstract

Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for several other organs and translated to humans. Organoid cultures have proved valuable for basic research and for the study of healthy tissue homeostasis and the biology of disease. In addition, data from proof-of-principle experiments support promising clinical applications of adult stem or progenitor cell organoids. Although renal organoids have many potential applications, an adult stem or progenitor cell organoid culture system has not yet been developed for the kidney. The development of such a system is likely to be challenging because of the intricate renal architecture. Differentiated 3D cultures and stem or progenitor cell 3D sphere cultures are, however, available for the kidney. These cultures indicate the feasibility of renal organoid culture and provide a solid basis for its development. In this Review, we discuss the state-of-the-art of human adult stem or progenitor cell organoid culture and the potential of renal organoids as tools in basic and clinical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human adult stem or progenitor cell organoid culture.
Figure 2: Applications of organoid culture.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Forster, R. et al. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Reports 2, 838–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shamir, E. R. & Ewald, A. J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 15, 647–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    Article  PubMed  Google Scholar 

  6. Bonandrini, B. et al. Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng. Part A 20, 1486–1498 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, J., Patton, D., Jackson, S. K. & Purcell, W. M. In vitro maintenance and functionality of primary renal tubules and their application in the study of relative renal toxicity of nephrotoxic drugs. J. Pharmacol. Toxicol. Methods 68, 269–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Reynolds, B. A. & Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Seaberg, R. M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D. & Witte, O. N. Isolation and functional characterization of murine prostate stem cells. Proc. Natl Acad. Sci. USA 104, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Watson, C. L. et al. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20, 1310–1314 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McQualter, J. L., Yuen, K., Williams, B. & Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl Acad. Sci USA 107, 1414–1419 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartfeld, S. et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148, 126–136 (2015).

    Article  PubMed  Google Scholar 

  27. Huch, M. et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160, 299–312 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Schwank, G., Andersson-Rolf, A., Koo, B. K., Sasaki, N. & Clevers, H. Generation of BAC transgenic epithelial organoids. PLoS ONE 8, e76871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Middendorp, S. et al. Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells 32, 1083–1091 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. VanDussen, K. L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139, 488–497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buczacki, S. J. et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 495, 65–69 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Roth, S. et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS ONE 7, e38965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cao, L. et al. Development of intestinal organoids as tissue surrogates: cell composition and the epigenetic control of differentiation. Mol. Carcinog. 54, 189–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Koo, B. K. et al. Controlled gene expression in primary Lgr5 organoid cultures. Nat. Methods 9, 81–83 (2012).

    Article  CAS  Google Scholar 

  37. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Fafilek, B. et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology 144, 381–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. van Es, J. H. et al. Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Schepers, A. G. et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337, 730–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Basak, O. et al. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J. 33, 2057–2068 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gracz, A. D., Ramalingam, S. & Magness, S. T. Sox9 expression marks a subset of CD24-expressing small intestine epithelial stem cells that form organoids in vitro. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G590–G600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mizutani, T. et al. Real-time analysis of P-glycoprotein-mediated drug transport across primary intestinal epithelium three-dimensionally cultured in vitro. Biochem. Biophys. Res. Commun. 419, 238–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Bigorgne, A. E. et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Invest. 124, 328–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Wiegerinck, C. L. et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology 147, 65–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Finkbeiner, S. R. et al. Stem cell-derived human intestinal organoids as an infection model for rotaviruses. MBio 3, e00159–12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mokry, M. et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146, 1040–1047 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. van de Wetering, M. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161, 933–945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Balharry, D., Sexton, K. & BeruBe, K. A. An in vitro approach to assess the toxicity of inhaled tobacco smoke components: nicotine, cadmium, formaldehyde and urethane. Toxicology 244, 66–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Emmink, B. L. et al. Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan. Gastroenterology 141, 269–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. O'Brien, L. L. & McMahon, A. P. Induction and patterning of the metanephric nephron. Semin. Cell Dev. Biol. 36, 31–38 (2014).

    Article  PubMed  Google Scholar 

  58. Kusaba, T. & Humphreys, B. D. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr. Nephrol. 29, 673–679 (2014).

    Article  PubMed  Google Scholar 

  59. Tornovsky-Babeay, S. et al. Type 2 diabetes and congenital hyperinsulinism cause DNA double-strand breaks and p53 activity in β cells. Cell Metab. 19, 109–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Yanger, K. & Stanger, B. Z. Facultative stem cells in liver and pancreas: fact and fancy. Dev. Dyn. 240, 521–529 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huch, M., Boj, S. F. & Clevers, H. Lgr5+ liver stem cells, hepatic organoids and regenerative medicine. Regen. Med. 8, 385–387 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Yanger, K. et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Rock, J. R. & Hogan, B. L. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu. Rev. Cell Dev. Biol. 27, 493–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grobstein, C. Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse. Science 118, 52–55 (1953).

    Article  CAS  PubMed  Google Scholar 

  67. Giuliani, S. et al. Ex vivo whole embryonic kidney culture: a novel method for research in development, regeneration and transplantation. J. Urol. 179, 365–370 (2008).

    Article  PubMed  Google Scholar 

  68. Karavanova, I. D., Dove, L. F., Resau, J. H. & Perantoni, A. O. Conditioned medium from a rat ureteric bud cell line in combination with bFGF induces complete differentiation of isolated metanephric mesenchyme. Development 122, 4159–4167 (1996).

    CAS  PubMed  Google Scholar 

  69. Xia, Y. et al. Directed differentiation of human pluripotent cells to ureteric bud kidney progenitor-like cells. Nat. Cell Biol. 15, 1507–1515 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Xia, Y. et al. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells. Nat. Protoc. 9, 2693–2704 (2014).

    Article  PubMed  Google Scholar 

  71. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Astashkina, A. I., Mann, B. K., Prestwich, G. D. & Grainger, D. W. Comparing predictive drug nephrotoxicity biomarkers in kidney 3D primary organoid culture and immortalized cell lines. Biomaterials 33, 4712–4721 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Subramanian, B. et al. Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. Tissue Eng. Part A 16, 2821–2831 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giles, R. H., Ajzenberg, H. & Jackson, P. K. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat. Protoc. 9, 2725–2731 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Buzhor, E. et al. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng. Part A 17, 2305–2319 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Buzhor, E. et al. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am. J. Pathol. 183, 1621–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Harari-Steinberg, O. et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol. Med. 5, 1556–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bombelli, S. et al. PKHhigh cells within clonal human nephrospheres provide a purified adult renal stem cell population. Stem Cell Res. 11, 1163–1177 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Kitamura, S., Sakurai, H. & Makino, H. Single adult kidney stem/progenitor cells reconstitute 3-dimensional nephron structures in vitro. Stem Cells 33, 774–784 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Lancaster, M. A. et al. Impaired Wnt-β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat. Med. 15, 1046–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. He, W. et al. Wnt/ β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schophuizen, C. S. et al. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Arch. 465, 1701–1714 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Sullivan, L. P., Grantham, J. A., Rome, L., Wallace, D. & Grantham, J. J. Fluorescein transport in isolated proximal tubules in vitro: epifluorometric analysis. Am. J. Physiol. 258, F46–F51 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, P. D. Apico-basal polarity in polycystic kidney disease epithelia. Biochim. Biophys. Acta 1812, 1239–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Hanaoka, K. & Guggino, W. B. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J. Am. Soc. Nephrol. 11, 1179–1187 (2000).

    CAS  PubMed  Google Scholar 

  90. Hirsch, H. H. et al. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation 79, 1277–1286 (2005).

    Article  PubMed  Google Scholar 

  91. Yamanaka, K. et al. Immunohistochemical features of BK virus nephropathy in renal transplant recipients. Clin. Transplant. 26 (Suppl. 24), 20–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Pannu, N. & Nadim, M. K. An overview of drug-induced acute kidney injury. Crit. Care Med. 36, S216–S223 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nair, S. & Wilding, J. P. Sodium glucose cotransporter 2 inhibitors as a new treatment for diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 34–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Hopkins, C., Li, J., Rae, F. & Little, M. H. Stem cell options for kidney disease. J. Pathol. 217, 265–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Pleniceanu, O., Harari-Steinberg, O. & Dekel, B. Concise review: kidney stem/progenitor cells: differentiate, sort out, or reprogram? Stem Cells 28, 1649–1660 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Humes, H. D., Buffington, D., Westover, A. J., Roy, S. & Fissell, W. H. The bioartificial kidney: current status and future promise. Pediatr. Nephrol. 29, 343–351 (2014).

    Article  PubMed  Google Scholar 

  98. Westover, A. J. et al. A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock. J. Tissue Eng. Regen. Med. http://dx.doi.org/10.1002/term.1961.

  99. Song, J. J. et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 19, 646–651 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors work is supported by grants from the Dutch Kidney Foundation (DKF14OP04 awarded to M.B.R.; DKF14OP04 awarded to F.S.; DKF14OP04 awarded to M.C.V.).

Author information

Authors and Affiliations

Authors

Contributions

M.B.R. and F.S. contributed equally to researching the data and writing the article. M.C.V. and H.C. reviewed and edited the manuscript before submission. All authors contributed to discussions of the content.

Corresponding authors

Correspondence to Maarten B. Rookmaaker or Hans Clevers.

Ethics declarations

Competing interests

H.C. holds several patents related to organoid technology (WO2009/022907, WO2010/090513, WO2012/014076, WO2012/168930 and WO2013/093812). The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rookmaaker, M., Schutgens, F., Verhaar, M. et al. Development and application of human adult stem or progenitor cell organoids. Nat Rev Nephrol 11, 546–554 (2015). https://doi.org/10.1038/nrneph.2015.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.118

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing