Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural conservation of hypervariable regions in immunoglobulins evolution

Abstract

Analysis of human and mouse immunoglobulins has shown that five of six hypervariable regions that form the antigen binding site have a small repertoire of main chain conformations (canonical structures). Cartilaginous fishes are the most distantly related species to humans known to have an immune system, their evolutionary lines having diverged 450 million years ago. An analysis of VH and Vκ sequences from these fishes shows that all the main chain structures in their L1, L2, H1 and H2 hypervariable regions, and one of those in the L3 region, are the same as those most commonly found in human and mouse. This implies that the canonical structures occurring most commonly in hypervariable regions arose very early in the stages of the evolution of the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chothia, C. & Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. molec. Biol. 196, 901–917 (1987).

    Article  CAS  Google Scholar 

  2. Chothia, C. et al. Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883 (1989).

    Article  CAS  Google Scholar 

  3. Chothia, C. et al. Structural repertoire of the human VH segments. J. molec. Biol. 227, 799–817 (1992).

    Article  CAS  Google Scholar 

  4. Wu, S. & Cygler, M. Conformation of complimentary determining region - L1 loop in murine IgG λ light chain extends the repertoire of canonical forms. J. molec. Biol. 229, 597–601 (1993).

    Article  CAS  Google Scholar 

  5. Litman, G.W. et al. Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Molec. Biol. Evol. 10, 60–72 1993).

    CAS  PubMed  Google Scholar 

  6. Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn & Winter, G. The repertoire of human germline VH sequences reveals about fifty groups of VH segments with different hypervariable loops. J. molec. Biol. 227, 776–798 (1992).

    Article  CAS  Google Scholar 

  7. Matsuda, M. et al. Structure and physical map of 64 variable segments in the 3′ 0.8-megabase region of the human immunoglobulin heavy-chain locus. Nature Genet. 3, 88–94 (1993).

    Article  CAS  Google Scholar 

  8. Cook, G.P. et al. A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. Nature Genet. 7, 162–168 (1994).

    Article  CAS  Google Scholar 

  9. Schable, K.F. & Zachau, H.-G. The variable genes of the human immunoglobulin κ locus. Biol. Chem. Hoppe-Seyler 374, 1001–1022 (1993).

    Article  CAS  Google Scholar 

  10. Kobubu, K., Litman, R., Shamblott, M.J., Hinds, K. & Litman, G.W. Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J. 7, 3413–3422 (1988).

    Article  Google Scholar 

  11. Hinds-Frey, K.R., Nishikata, H., Litman, R.T. & Litman, G.W. Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J. exp. Med. 178, 815–824 (1993).

    Article  CAS  Google Scholar 

  12. Harding, F.A., Cohen, N. & Litman, G. W. Immunoglobulin heavy chain organization and complexity in the skate, Raja erinacea. Nucleic Acids Res. 18, 1015–1020 (1990).

    Article  CAS  Google Scholar 

  13. Harding, F.A., Amemiya, C.T., Liman, R.T., Cohen, N. & Litman, G.W. Two distinct immunoglobulin heavy chain isotypes in a primitive cartilaginous fish, Raja erinacea. Nucleic Acids Res. 18, 6369–6376 (1990).

    Article  CAS  Google Scholar 

  14. Vasquez, M., Mizuki, N., Flajnik, M.F., McKinney, E.C. & Kasahara, M. Nucleotide sequence of a nurse shark immunoglobulin heavy chain cDNA clone. Molec. Immunol. 29, 1157–1158 (1992).

    Article  Google Scholar 

  15. Greenberg, A.S., Steiner, L., Kasahara, M & Flajnik, M.F. Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian κ light chains: implications for the evolution of light chains. Proc. natn. Acad. Sci. U.S.A. 90, 10603–10607 (1993).

    Article  CAS  Google Scholar 

  16. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  Google Scholar 

  17. Rast, J.P. et al. Immunoglobulin light chain class mulitiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40, 83–99, (1994).

    Article  CAS  Google Scholar 

  18. Tramontano, A., Chothia, C. & Lesk, A.M. Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH domains of immunoglobulins. J. molec. Biol. 215, 175–182 (1990).

    Article  CAS  Google Scholar 

  19. Max, E.E. Molecular genetics of immunoglobulins. in Fundamental Immunology 3rd ed., (ed. W.E. Paul, Raven Press, New York; 1993).

    Google Scholar 

  20. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983).

    Article  CAS  Google Scholar 

  21. Hinds, K.R. & Litman, G.W. Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320, 546–549 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barré, S., Greenberg, A., Flajnik, M. et al. Structural conservation of hypervariable regions in immunoglobulins evolution. Nat Struct Mol Biol 1, 915–920 (1994). https://doi.org/10.1038/nsb1294-915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1294-915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing