Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural characterization of activation ‘intermediate 2’ on the pathway to human gastricsin

Abstract

The crystal structure of an activation intermediate of human gastricsin has been determined at 2.4 Å resolution. The human digestive enzyme gastricsin (pepsin C) is an aspartic proteinase that is synthesized as the inactive precursor (zymogen) progastricsin (pepsinogen C or hPGC). In the zymogen, a positively-charged N-terminal prosegment of 43 residues (Ala 1p–Leu 43p; the suffix ‘p’ refers to the prosegment) sterically prevents the approach of a substrate to the active site. Zymogen conversion occurs in an autocatalytic and stepwise fashion at low pH through the formation of intermediates. The structure of the non-covalent complex of a partially-cleaved peptide of the prosegment (Ala 1p–Phe 26p) with mature gastricsin (Ser 1–Ala 329) suggests an activation pathway that may be common to all gastric aspartic proteinases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fusek, M. & Vetvicka, V. Aspartic proteinases: physiology and pathology (CRC Press, New York, New York; 1995).

    Google Scholar 

  2. Herriott, R.M. Isolation crystallization and properties of swine pepsinogen. J. Gen. Physiol. 21, 501–540 (1938).

    Article  CAS  Google Scholar 

  3. Herriott, R.M. Kinetics of the formation of pepsin from swine pepsinogen and identification of an intermediate compound. J. Gen. Physiol. 22, 65–78 (1939).

    Article  Google Scholar 

  4. McPhie, P. A spectrophotometric investigation of the pepsinogen-pepsin conversion. J. Biol. Chem. 247, 4277–4281 (1972).

    CAS  PubMed  Google Scholar 

  5. Moore, S.A., Sielecki, A.R., Chernaia, M.M., Tarasova, N.I. & James, M.N.G. Crystal and molecular structures of human progastricsin at 1.62 Å resolution. J. Mol. Biol. 247, 466–485 (1995).

    Article  CAS  Google Scholar 

  6. James, M.N.G. & Sielecki, A.R. Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8Å resolution. Nature 319, 33–38 (1986).

    Article  CAS  Google Scholar 

  7. Auer, H.E. & Glick, D.M. Early events of pepsinogen activation. Biochemistry 23, 2735–2739 (1984).

    Article  CAS  Google Scholar 

  8. Foltmann, B. & Jensen, A.L. Human progastricsin. Analysis of intermediates during activation into gastricsin and determination of the amino acid sequence of the propart. Eur J. Biochem. 128, 63–70 (1982).

    Article  CAS  Google Scholar 

  9. Fujinaga, M., Chernaia, M.M., Tarasova, N.I., Mosimann, S.C. & James, M.N.G. Crystal structure of human pepsin and its complex with pepstatin. Protein Sci. 4, 960–972 (1995).

    Article  CAS  Google Scholar 

  10. Davies, D.R. The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Chem. 19, 189–215 (1990).

    Article  CAS  Google Scholar 

  11. Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain Biochem. Biophys. Res. Common. 27, 157–162 (1967).

    Article  CAS  Google Scholar 

  12. Yang, J., Teplyakov, A. & Quail, J.W. Crystal structure of the aspartic protease from Rhizomucor miehei at 2.15 Å resolution. J. Mol. Biol. 268, 449–459 (1997).

    Article  CAS  Google Scholar 

  13. Cutfield, S.M. et al. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure 3, 1261–1267 (1995).

    Article  CAS  Google Scholar 

  14. Glick, D.M., Shalitin, Y. & Hitt, C.R. Studies on the irreversible step of pepsinogen activation. Biochemistry 28, 2626–2630 (1989).

    Article  CAS  Google Scholar 

  15. Foltmann, B., Harlow, K., Houen, G., Nielsen, P.K. & Sangild, P. Comparative investigations on pig gastric proteinases and their zymogens, in Aspartic Proteinases: Structure, Function, Biology and Biomedical Implications (ed. Takahashi, K.) 41–51 (Plenum Press, New York; 1995).

    Chapter  Google Scholar 

  16. Nielsen, F.S. & Foltmann, B. Activation of porcine pepsinogen A: the stability of two non-covalent intermediates at pH 8.5. Eur. J. Biochem. 217, 137–142 (1993).

    Article  CAS  Google Scholar 

  17. Richardson, J.S. & Richardson, D.C. Amino acid preferences for specific locations at the ends of α-helices. Science 240, 1648–1652 (1988).

    Article  CAS  Google Scholar 

  18. Harper, E.T. & Rose, G.D. Helix stop signals in proteins and peptides: the capping box. Biochemistry 32, 7605–7609 (1993).

    Article  CAS  Google Scholar 

  19. Dykes, C.W. & Kay, J. Conversion of pepsinogen into pepsin is not a one-step process. Biochem. J. 153, 141–144 (1976).

    Article  CAS  Google Scholar 

  20. Glick, D.M., Shalitin, Y. & Hilt, C.R. Studies on the irreversible step of pepsinogen activation. Biochemistry 28, 2626–2630 (1989).

    Article  CAS  Google Scholar 

  21. Kageyama, T. et al. Differences of activation processes and structure of activation peptides in human pepsinogens A and progastricsin. J. Biochem. 105, 15–22 (1989

    Article  CAS  Google Scholar 

  22. Marciniszyn, Jr., J., Huang, J.S., Hartsuck, J.A. & Tang, J. Mechanism of intramolecular activation of pepsinogen. J. Biol. Chem. 251, 7095–7102 (1976).

    CAS  PubMed  Google Scholar 

  23. Athauda, S.B.P., Tanji, M., Kageyama, T. & Takahashi, K. A comparative study on the N-terminal amino acid sequences and some other properties of six isozymic forms of human pepsinogens and pepsins. J. Biochem. 106, 920–927 (1989).

    Article  CAS  Google Scholar 

  24. Rudenko, G., Bonten, E., d′Azzo, A. & Hol, W.G.J. Three-dimensional structure of the ‘human protective protein’: structure of the precursor form suggests a complex activation mechanism. Structure 15, 1249–1259 (1995).

    Article  Google Scholar 

  25. Coulombe, R. et al. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J. 15, 5492–5503 (1996).

    Article  CAS  Google Scholar 

  26. Cygler, M. et al. Structure of rat procathepsin B. Model for inhibition of cysteine protease activity by the proregion. Structure 4, 405–416 (1996).

    Article  CAS  Google Scholar 

  27. Turk, D., Podobnik, M., Kuhelj, R., Dolnar, M. & Turk, V. Crystal structures of procathepsin B at 3.2 and 3.3 Å resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS Lett. 384, 211–214 (1996).

    Article  CAS  Google Scholar 

  28. Bonten, E.J. et al. Lysosomal protective protein/cathepsin A. Role of the “linker” domain in catalytic activation. J. Biol. Chem. 270, 26441–26445 (1995).

    Article  CAS  Google Scholar 

  29. Sorenson, S.O. Van den Hazel, H.B., Kielland-Brandt, M.C & Winther, J.R. pH-dependent processing of yeast carboxypeptidase Y by proteinase A in vivo and in vitro. Eur. J. Biochem. 220, 19–27 (1994).

    Article  Google Scholar 

  30. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, UK; 1993).

    Google Scholar 

  31. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  32. Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A52, 659–668 (1996).

    Article  CAS  Google Scholar 

  33. Brunger, A.T. XPLOR: a system for X-ray crystallography and NMR (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  34. CCP4, in The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  35. Jones, T.A. & Kjeldgaard, M. O the Manual, Version 5.11 (Uppsala, Sweden; 1995).

    Google Scholar 

  36. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced colouring capabilities. J. Mol. Graphics 15, 133–138 (1997).

    Google Scholar 

  37. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Crystallogr. D50, 869–873 (1994).

    CAS  Google Scholar 

  38. Hayano, T., Sogawa, K., Ichihara, Y, Fuji-Kuriyama, Y. & Takahashi, K. Primary structure of human pepsinogen C gene. J. Biol. Chem. 263, 1382–1385 (1988).

    CAS  PubMed  Google Scholar 

  39. Taggart, R.T. et al. Human pepsinogen C (progastricsin). Isolation of cDNA clones, localization to chromosome 6, and sequence homology with pepsinogen A. J. Biol. Chem. 264, 375–379 (1989).

    CAS  PubMed  Google Scholar 

  40. Kageyama, T. & Takahashi, K. The complete amino acid sequence of monkey progastricsin J. Biol. Chem. 261, 4406–4419 (1986).

    CAS  PubMed  Google Scholar 

  41. Ichihara, Y, Sogawa, K., Morohashi, K., Fuji-Kuriyama, Y. & Takahashi, K. Nucleotide sequence of a nearly full-length cDNA coding for pepsinogen of rat gastric mucosa. Eur. J. Biochem. 161, 7–12 (1986).

    Article  CAS  Google Scholar 

  42. Kageyama, T. et al. Gastric procathepsin E and progastricsin from guinea pig. J. Biol. Chem. 267, 16450–16459 (1992).

    CAS  PubMed  Google Scholar 

  43. Sogawa, K., Fuji-Kuriyama, Y., Mizukami, Y., Ichihara, Y. & Takahashi, K. Primary structure of human pepsinogen gene. J. Biol. Chem. 258, 5306–5311 (1983).

    CAS  PubMed  Google Scholar 

  44. Kageyama, T. & Takahashi, K. The complete amino acid sequence of monkey pepsinogen A. J. Biol. Chem. 261, 4395–4405 (1986).

    CAS  PubMed  Google Scholar 

  45. Baudys, M. & Kostka, V. Covalent structure of chicken pepsinogen. Eur. J. Bioch. 136, 89–99 (1983).

    Article  CAS  Google Scholar 

  46. Tsukagoshi, N. et al. Nucleotide sequence and expression in Esherichia coli of cDNA of swine pepsinogen: involvement of the amino-terminal portion of the activation peptide segment in restoration of the functional protein. Gene 65: 285–292 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Cherney, M., Tarasova, N. et al. Structural characterization of activation ‘intermediate 2’ on the pathway to human gastricsin. Nat Struct Mol Biol 4, 1010–1015 (1997). https://doi.org/10.1038/nsb1297-1010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1297-1010

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing