Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule

Abstract

Intracellular Ca2+ acts as a second messenger that regulates numerous physiological cellular phenomena including development, differentiation and apoptosis. Cameleons, a class of fluorescent indicators for Ca2+ based on green fluorescent proteins (GFPs) and calmodulin (CaM), have proven to be a useful tool in measuring free Ca2+ concentrations in living cells. Traditional cameleons, however, have a small dynamic range of fluorescence resonance energy transfer (FRET), making subtle changes in Ca2+ concentrations difficult to detect and study in some cells and organelles. Using the NMR structure of CaM bound to the CaM binding peptide derived from CaM-dependent kinase kinase (CKKp), we have rationally designed a new cameleon that displays a two-fold increase in the FRET dynamic range within the physiologically significant range of cytoplasmic Ca2+ concentration of 0.05-1 μM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of YC6.1.
Figure 2: 1H-15N HSQC NMR spectra of 15N labeled CaM in complex with CKKp and 15N labeled (N-CaM)-CKKp-(C-CaM).
Figure 3: Fluorescence properties of YC6.1 in vitro.
Figure 4: Ca2+ imaging of HeLa cells using YC2.1 and YC6.1.
Figure 5: Ca2+ imaging of rat hippocampus neurons using YC2.1 and YC6.1.

Similar content being viewed by others

References

  1. Miyawaki, A. et al. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Heim, R., Prasher, D.C. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heim, R. & Tsien, R.Y. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Crivici, A. & Ikura, M. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Ikura, M. et al. Science 256, 632–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Heim, R., Cubitt, A.B. & Tsien, R.Y. Nature 373, 663–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Cormack, B.P., Valdivia, R.H. & Falkow, S. Gene 173, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Ormo, M. et al. Science 273, 1392–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Miyawaki, A. & Tsien, R.Y. Methods. Enzymol. 327, 472–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagai, T., Sawano, A., Park, E.S. & Miyawaki, Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsien, R. & Pozzan, T. Methods. Enzymol. 172, 230–262 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Tsien, R.Y., Rink, T.J. & Poenie, M. Cell Calcium 6, 145–157 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Wahl, M., Lucherini, M.J. & Gruenstein, E. Cell Calcium 11, 487–500 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Osawa, M. et al. Nature Struct. Biol. 6, 819–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Porumb, T., Yau, P., Harvey, T.S. & Ikura, M. Protein Eng. 7, 109–115 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Meador, W.E., Means, A.R. & Quiocho, F.A. Science 257, 1251–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Meador, W.E., Means, A.R. & Quiocho, F.A. Science 262, 1718–1721 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Stryer, L. Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Truong, K. & Ikura, M. Curr. Opin. Struct. Biol. 11, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Berridge, M.J., Lipp, P. & Bootman, M.D. Nature Rev. Mol. Cell Bio. 1, 11–21 (2000).

    Article  CAS  Google Scholar 

  23. Zamani, M.R. & Bristow, D.R. Brit. J. Pharmacol. 118, 1119–1126 (1996).

    Article  CAS  Google Scholar 

  24. Bootman, M.D., Cheek, T.R., Moreton, R.B., Bennett, D.L. & Berridge, M.J. J. Biol. Chem. 269, 24783–24791 (1994).

    CAS  PubMed  Google Scholar 

  25. Forster T. Ann. Physik. 2, 55–75 (1948).

    Article  CAS  Google Scholar 

  26. Waldo, G.S., Standish, B.M., Berendzen, J. & Terwilliger, T.C. Nature Biotech. 17, 691–695 (1999).

    Article  CAS  Google Scholar 

  27. Blackstone, C. & Sheng, M. Cell Calcium 26, 181–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Yap, K. et al. J. Struct. Funct. Genomics 1, 8–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Gene 77, 61–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Grynkiewicz, G., Poenie, M. & Tsien, R.Y. J. Biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  31. Kay, L.E., Keifer, P. & Saarinen, T. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  32. Wigler, M., Pellicer, A., Silverstein, S. & Axel, R. Cell 14, 725–731 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Sanchez, R. & Sali, A. Methods Mol. Biol. 143, 97–129 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from Howard Hughes Medical Institute (HHMI) to M.I., CREST (Core Research for Evolutional Science and Technology) and an NCIC Fellowship to T.K.M.. M.I. is an HHMI International Scholar and a Canadian Institutes of Health Research Scientist. We thank J. Gooding for her excellent assistance in manuscript editing. The YC6 vectors are available from the authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiko Ikura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truong, K., Sawano, A., Mizuno, H. et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nat Struct Mol Biol 8, 1069–1073 (2001). https://doi.org/10.1038/nsb728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing