Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LpxI structures reveal how a lipid A precursor is synthesized

Abstract

Enzymes in lipid metabolism acquire and deliver hydrophobic substrates and products from within lipid bilayers. The structure at 2.55 Å of one isozyme of a constitutive enzyme in lipid A biosynthesis, LpxI from Caulobacter crescentus, has a novel fold. Two domains close around a completely sequestered substrate, UDP-2,3-diacylglucosamine, and open to release products either to the neighboring enzyme in a putative multienzyme complex or to the bilayer. Mutation analysis identifies Asp225 as key to Mg2+-catalyzed diphosphate hydrolysis. These structures provide snapshots of the enzymatic synthesis of a critical lipid A precursor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lipid A is an essential membrane component of Gram-negative bacteria.
Figure 2: Topology and overall fold of CcLpxI and CcLpxI-D225A in complex with lipid X and UDP-2,3-diacylglucosamine, respectively.
Figure 3: Absolutely conserved polar residues mapped to the structure of CcLpxI-D225A.
Figure 4: Ligand binding in CcLpxI and CcLpxI-D225A.
Figure 5: CcLpxI dimerization.
Figure 6: A model for CcLpxI-mediated catalysis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Raetz, C.R.H. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Raetz, C.R.H., Reynolds, C.M., Trent, M.S. & Bishop, R.E. Lipid A modification systems in gram-negative bacteria. Annu. Rev. Biochem. 76, 295–329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Croxen, M.A. & Finlay, B.B. Molecular mechanisms of Escherichia coli pathogenicity. Nat. Rev. Microbiol. 8, 26–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Miller, S.I., Ernst, R.K. & Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Babinski, K.J., Kanjilal, S.J. & Raetz, C.R.H. Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an Escherichia coli mutant lacking the lpxH gene. J. Biol. Chem. 277, 25947–25956 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Babinski, K.J. & Raetz, C.R.H. Identification of a gene encoding a novel Escherichia coli UDP-2,3-diacylglucosamine hydrolase. FASEB J. 12, A1288 (1998).

    Google Scholar 

  7. Metzger, L.E. & Raetz, C.R. An alternative route for UDP-diacylglucosamine hydrolysis in bacterial lipid A biosynthesis. Biochemistry 49, 6715–6726 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Stahelin, R.V. Lipid binding domains: more than simple lipid effectors. J. Lipid Res. 50, S299–S304 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ko, T.P. et al. Crystal structure of yeast cytosine deaminase. Insights into enzyme mechanism and evolution. J. Biol. Chem. 278, 19111–19117 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, M.S., Bulawa, C.E. & Raetz, C.R.H. The biosynthesis of gram-negative endotoxin: formation of lipid A precursors from UDP-GlcNAc in extracts of Escherichia coli. J. Biol. Chem. 260, 15536–15541 (1985).

    CAS  PubMed  Google Scholar 

  11. Huang, B. MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13, 325–330 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Coleman, R.G. & Sharp, K.A. Protein pockets: inventory, shape, and comparison. J. Chem. Inf. Model. 50, 589–603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bligh, E.G. & Dyer, J.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  PubMed  Google Scholar 

  14. Garrett, T.A., Kordestani, R. & Raetz, C.R.H. Quantification of cardiolipin by liquid chromatography-electrospray ionization mass spectrometry. Methods Enzymol 433, 213–230 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Metzger, L.E. & Raetz, C.R.H. Purification and characterization of the lipid A disaccharide synthase (LpxB) from Escherichia coli, a peripheral membrane protein. Biochemistry 48, 11559–11571 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schaaf, G. et al. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the Sec14 superfamily. Mol. Cell 29, 191–206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Epand, R.M. & Epand, R.F. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochimica Et Biophysica Acta 1788, 289–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Silk, J.D., Salio, M., Brown, J., Jones, E.Y. & Cerundolo, V. Structural and functional aspects of lipid binding by CD1 molecules. Annu. Rev. Cell Dev. Biol. 24, 369–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J. et al. Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc. Natl. Acad. Sci. USA 107, 1535–1540 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Park, B.S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Bryant, C.E., Spring, D.R., Gangloff, M. & Gay, N.J. The molecular basis of the host response to lipopolysaccharide. Nat. Rev. Microbiol. 8, 8–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, A.H. & Raetz, C.R.H. Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl. Acad. Sci. USA 104, 13543–13550 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robins, L.I., Williams, A.H. & Raetz, C.R.H. Structural basis for the sugar nucleotide and acyl-chain selectivity of Leptospira interrogans LpxA. Biochemistry 48, 6191–6201 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lemmon, M.A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Kutateladze, T.G. Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog. Lipid Res. 46, 315–327 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bessman, M.J., Frick, D.N. & O'Handley, S.F. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J. Biol. Chem. 271, 25059–25062 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Gabelli, S.B. et al. Structure and mechanism of GDP-mannose glycosyl hydrolase, a nudix enzyme that cleaves at carbon instead of phosphorus. Structure 12, 927–935 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Gahan, L.R., Smith, S.J., Neves, A. & Schenk, G. Phosphate ester hydrolysis: metal complexes as purple acid phosphatase and phosphotriesterase analogues. Eur. J. Inorg. Chem 2009, 2745–2758 (2009).

    Article  Google Scholar 

  30. Kraszewska, E. The plant Nudix hydrolase family. Acta Biochim. Pol. 55, 663–671 (2008).

    CAS  PubMed  Google Scholar 

  31. McLennan, A.G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 63, 123–143 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, M.S., Robertson, A.D., Macher, I. & Raetz, C.R.H. Biosynthesis of lipid A in Escherichia coli: identification of UDP-3-O-(R-3-hydroxymyristoyl)-α-D-glucosamine as a precursor of UDP-N2-O3-bis-(R-3-hydroxymyristoyl)-α- D-glucosamine. Biochemistry 27, 1908–1917 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, T.M., Stachula, S.A., Raetz, C.R.H. & Anderson, M.S. The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-α- D-glucosamine N-acyltransferase: the third step of endotoxin biosynthesis. J. Biol. Chem. 268, 19866–19874 (1993).

    CAS  PubMed  Google Scholar 

  35. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    Article  PubMed  Google Scholar 

  37. Holton, J. & Alber, T. Automated protein crystal structure determination using ELVES. Proc. Natl. Acad. Sci. USA 101, 1537–1542 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adams, P.D. et al. The Phenix software for automated determination of macromolecular structures. Methods 55, 94–106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  40. Krissinel, E.B. et al. The new CCP4 Coordinate Library as a toolkit for the design of coordinate-related applications in protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 60, 2250–2255 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Headd, J.J. et al. Autofix for backward-fit sidechains: using MolProbity and real-space refinement to put misfits in their place. J. Struct. Funct. Genomics 10, 83–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Davis, I.W., Murray, L.W., Richardson, J.S. & Richardson, D.C. MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32, W615–W619 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garrett, T.A. & Raetz, C.R.H. Identification of new lipid metabolites in Escherichia coli total lipid extracts using electrospray ionization quadrupole time of flight mass spectrometry. FASEB J. 21, A605 (2007).

    Google Scholar 

  46. Laue, T.M. & Stafford, W.F. III. Modern applications of analytical ultracentrifugation. Annu. Rev. Biophys. Biomol. Struct. 28, 75–100 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Lebowitz, J., Lewis, M.S. & Schuck, P. Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuck, P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to the memory of coauthor Christian R.H. Raetz (1946–2011), our dear colleague and friend. We thank H.S. Chung, D.A. Six, Z. Guan, G. Laird, J.M. Holton, N.I. Nicely, J.E. Pak and J.W. Werner-Allen for helpful discussions. We thank H.J. Sage for analytical ultracentrifugation services. This research was supported by the US National Institutes of Health grants U54GM094625 (to R.M.S.), GM24485 (to R.M.S.), GM51310 (to C.R.H.R.) and GM069338 (to C.R.H.R.).

Author information

Authors and Affiliations

Authors

Contributions

L.E.M. purified and biochemically characterized the protein. L.E.M. and J.K.L. determined and optimized the crystallization conditions, collected the crystallographic data and solved the structures. L.E.M., J.K.L. and J.S.F.-M. refined the structures. L.E.M., J.S.F.-M., C.R.H.R. and R.M.S. analyzed and interpreted the structures. L.E.M. performed and analyzed, with C.R.H.R., the LC/MS experiments. L.E.M. wrote the manuscript and J.S.F.-M. and R.M.S. edited the manuscript.

Corresponding authors

Correspondence to Louis E Metzger IV or Robert M Stroud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzger, L., Lee, J., Finer-Moore, J. et al. LpxI structures reveal how a lipid A precursor is synthesized. Nat Struct Mol Biol 19, 1132–1138 (2012). https://doi.org/10.1038/nsmb.2393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing