Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Remodelers tap into nucleosome plasticity

Chromatin-remodeling enzymes perform the formidable task of reorganizing the structure of a stable macromolecular assembly, the nucleosome. Recently published work demonstrates that the SNF2H chromatin remodeler distorts the histone octamer structure upon binding to the nucleosome, then taps into this induced plasticity to productively achieve nucleosome sliding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for the role of histone octamer distortion in nucleosome sliding.

References

  1. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Sinha, K.K., Gross, J.D. & Narlikar, G.J. Science 355, eaaa3761 (2017).

    Article  Google Scholar 

  3. Deindl, S. et al. Cell 152, 442–452 (2013).

    Article  CAS  Google Scholar 

  4. Hwang, W.L., Deindl, S., Harada, B.T. & Zhuang, X. Nature 512, 213–217 (2014).

    Article  CAS  Google Scholar 

  5. Rosenzweig, R. & Kay, L.E. Annu. Rev. Biochem. 83, 291–315 (2014).

    Article  CAS  Google Scholar 

  6. Dang, W., Kagalwala, M.N. & Bartholomew, B. Mol. Cell. Biol. 26, 7388–7396 (2006).

    Article  CAS  Google Scholar 

  7. Clapier, C.R. & Cairns, B.R. Nature 492, 280–284 (2012).

    Article  CAS  Google Scholar 

  8. Racki, L.R. et al. J. Mol. Biol. 426, 2034–2044 (2014).

    Article  CAS  Google Scholar 

  9. Kato, H. et al. Proc. Natl. Acad. Sci. USA 108, 12283–12288 (2011).

    Article  CAS  Google Scholar 

  10. Singh, H.R. & Ladurner, A.G. Mol. Cell 55, 345–346 (2014).

    Article  CAS  Google Scholar 

  11. Clapier, C.R. & Cairns, B.R. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  Google Scholar 

  12. Erdel, F. & Rippe, K. Nucleus 2, 105–112 (2011).

    Article  Google Scholar 

  13. Erdel, F. & Rippe, K. FEBS J. 278, 3608–3618 (2011).

    Article  CAS  Google Scholar 

  14. Hauk, G., McKnight, J.N., Nodelman, I.M. & Bowman, G.D. Mol. Cell 39, 711–723 (2010).

    Article  CAS  Google Scholar 

  15. VanDemark, A.P. et al. Mol. Cell 27, 817–828 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Deutsche Forschungsgemeinschaft (SFB 646 and 1064 to A.G.L.; SFB 1064 to H.R.S.) and from the European Commission (Marie Skłodowska Curie Individual Fellowship 'SilentFACT' and H2020-MSCA-IF-2014 contract 657244 to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G Ladurner.

Ethics declarations

Competing interests

A.G.L. is on the Scientific Advisory Board of VolitionRx, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Murawska, M. & Ladurner, A. Remodelers tap into nucleosome plasticity. Nat Struct Mol Biol 24, 341–343 (2017). https://doi.org/10.1038/nsmb.3394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing