Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4–binding residues

Abstract

The four mammalian SPRY domain–containing SOCS box proteins (SSB-1 to SSB-4) are characterized by a C-terminal SOCS box and a central SPRY domain. We have determined the first SPRY-domain structure, as part of SSB-2, by NMR. This domain adopts a novel fold consisting of a β-sandwich structure formed by two four-stranded antiparallel β-sheets with a unique topology. We demonstrate that SSB-1, SSB-2 and SSB-4, but not SSB-3, bind prostate apoptosis response protein-4 (Par-4). Mutational analysis of SSB-2 loop regions identified conserved structural determinants for its interaction with Par-4 and the hepatocyte growth factor receptor, c-Met. Mutations in analogous loop regions of pyrin and midline-1 SPRY domains have been shown to cause Mediterranean fever and Opitz syndrome, respectively. Our findings provide a template for SPRY-domain structure and an insight into the mechanism of SPRY-protein interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of SSB-2 and comparison of topologies between the SPRY domain of SSB-2 and the immunoglobulin fold.
Figure 2: Summary of backbone amide exchange and 15N relaxation parameters.
Figure 3: Phylogenetic and secondary structure analysis of the SPRY domain.
Figure 4: SSB-1, SSB-2 and SSB-4 interact directly and specifically with Par-4, and this requires conserved SPRY-domain residues.
Figure 5: Residues crucial for the function of SSB-2, pyrin and MID1 SPRY domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Alexander, W.S. & Hilton, D.J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Krebs, D.L. & Hilton, D.J. SOCS: physiological suppressors of cytokine signaling. J. Cell Sci. 113, 2813–2819 (2000).

    CAS  PubMed  Google Scholar 

  3. Zhang, J.G. et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamizono, S. et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J. Biol. Chem. 276, 12530–12538 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Hilton, D.J. et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA 95, 114–119 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ponting, C., Schultz, J. & Bork, P. SPRY domains in ryanodine receptors (Ca(2+)-release channels). Trends Biochem. Sci. 22, 193–194 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henry, J., Ribouchon, M.T., Offer, C. & Pontarotti, P. B30.2-like domain proteins: a growing family. Biochem. Biophys. Res. Commun. 235, 162–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, D., Li, Z., Schoen, S.R., Messing, E.M. & Wu, G. A novel MET-interacting protein shares high sequence similarity with RanBPM, but fails to stimulate MET-induced Ras/Erk signaling. Biochem. Biophys. Res. Commun. 313, 320–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Trusolino, L. & Comoglio, P.M. Scatter-factor and semaphorin receptors: cell signaling for invasive growth. Nat. Rev. Cancer 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, D., Li, Z., Messing, E.M. & Wu, G. The SPRY domain-containing SOCS box protein 1 (SSB-1) interacts with MET and enhances the hepatocyte growth factor-induced Erk-Elk-1-serum response element pathway. J. Biol. Chem. 280, 16393–16401 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sohar, E., Gafni, J., Pras, M. & Heller, H. Familial Mediterranean fever. A survey of 470 cases and review of the literature. Am. J. Med. 43, 227–253 (1967).

    Article  CAS  PubMed  Google Scholar 

  15. A candidate gene for familial Mediterranean fever. The French FMF Consortium. Nat. Genet. 17, 25–31 (1997).

  16. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. The International FMF Consortium. Cell 90, 797–807 (1997).

  17. Touitou, I. The spectrum of Familial Mediterranean Fever (FMF) mutations. Eur. J. Hum. Genet. 9, 473–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Nadeau, J.H. Modifier genes in mice and humans. Nat. Rev. Genet. 2, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Quaderi, N.A. et al. Opitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22. Nat. Genet. 17, 285–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Trockenbacher, A. et al. MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat. Genet. 29, 287–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Robin, N.H., Opitz, J.M. & Muenke, M. Opitz G/BBB syndrome: clinical comparisons of families linked to Xp22 and 22q, and a review of the literature. Am. J. Med. Genet. 62, 305–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lian, L.-Y. & Roberts, G.C.K. Effects of chemical exchange on NMR spectra. in NMR of Macromolecules, A Practical Approach, Ch. 6, 153–81 (Oxford University Press, Oxford, 1993).

    Google Scholar 

  23. Holm, L. & Sander, C. Touring protein fold space with Dali/FSSP. Nucleic Acids Res. 26, 316–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pearl, F. et al. The CATH domain structure database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res. 33, D247–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Seto, M.H., Liu, H.L., Zajchowski, D.A. & Whitlow, M. Protein fold analysis of the B30.2-like domain. Proteins 35, 235–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, M., Gaudieri, S., Rhodes, D.A. & Trowsdale, J. Cluster of TRIM genes in the human MHC class I region sharing the B30.2 domain. Tissue Antigens 61, 63–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Sawyer, S.L., Wu, L.I., Emerman, M. & Malik, H.S. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc. Natl. Acad. Sci. USA 102, 2832–2837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sells, S.F. et al. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Growth Differ. 5, 457–466 (1994).

    CAS  Google Scholar 

  29. Gurumurthy, S. & Rangnekar, V.M. Par-4 inducible apoptosis in prostate cancer cells. J. Cell. Biochem. 91, 504–512 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Cheema, S.K. et al. Par-4 transcriptionally regulates Bcl-2 through a WT1-binding site on the bcl-2 promoter. J. Biol. Chem. 278, 19995–20005 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Diaz-Meco, M.T. et al. The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86, 777–786 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Schweiger, S. et al. The Opitz syndrome gene product, MID1, associates with microtubules. Proc. Natl. Acad. Sci. USA 96, 2794–2799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao, S. et al. Backbone 1H, 13C and 15N assignments of the 25 kDa SPRY domain-containing SOCS box protein 2 (SSB-2). J. Biomol. NMR 31, 69–70 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bartels, C., Xia, T.H., Billeter, M., Güntert, P. & Wüthrich, K. The program XEASY for computer-supported NMR spectral-analysis of biological macromolecules. J. Biomol. NMR 6, 1–10 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Yao, S. et al. Backbone dynamics measurements on leukemia inhibitory factor, a rigid four-helical bundle cytokine. Protein Sci. 9, 671–682 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hwang, T.-L., van Zijl, P.C.M. & Mori, S. Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme. J. Biomol. NMR 11, 221–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Farrow, N.A. et al. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  40. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 29–32 (1996).

    Article  Google Scholar 

  43. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Page, R.D. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358 (1996).

    CAS  PubMed  Google Scholar 

  45. Mizushima, S. & Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Nicholson, S.E. et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masters, S.L. et al. Genetic deletion of murine SPRY domain-containing SOCS box protein 2 (SSB-2) results in very mild thrombocytopenia. Mol. Cell. Biol. 25, 5639–5647 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Shi, J., Blundell, T.L. & Mizuguchi, K. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310, 243–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Luthy, R., Bowie, J.U. & Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature 356, 83–85 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Halaby, D.M. & Mornon, J.P. The immunoglobulin superfamily: an insight on its tissular, species and functional diversity. J. Mol. Evol. 46, 389–400 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council, Australia (Program grant 257500), and by AMRAD operations Pty. Ltd., Melbourne, Australia. S.E.N. was supported by a National Health and Medical Research Council Biomedical Career Development award. The authors would like to thank N. Sprigg for expert technical assistance, R. Simpson, L. Connelly and D. Frecklington for protein identification by peptide mass spectroscopy, R. Johnstone for generously providing Par-4 expression constructs and D. Keizer for advice on structure calculations. We also thank P. Colman and W. Alexander for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raymond S Norton or Sandra E Nicholson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

1H-15N HSQC spectrum of SSB-2. (PDF 141 kb)

Supplementary Fig. 2

The solution structure of SSB-2. (PDF 107 kb)

Supplementary Table 1

Mutational analysis of the SSB-2 SPRY domain (PDF 35 kb)

Supplementary Table 2

Primers used for cDNA cloning (PDF 1194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masters, S., Yao, S., Willson, T. et al. The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4–binding residues. Nat Struct Mol Biol 13, 77–84 (2006). https://doi.org/10.1038/nsmb1034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing