Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1

Abstract

Receptor oligomerization is vital for activating intracellular signaling, in part by initiating events that recruit effector and adaptor proteins to sites of active signaling. Whether these distal molecules themselves oligomerize is not well appreciated. In this study, we examined the molecular interactions of the adaptor protein GRB2. In T cells, the SH2 domain of GRB2 binds phosphorylated tyrosines on the adaptor protein LAT and the GRB2 SH3 domains associate with the proline-rich regions of SOS1 and CBL. Using biochemical and biophysical techniques in conjunction with confocal microscopy, we observed that the simultaneous association of GRB2, via its SH2 and SH3 domains, with multivalent ligands led to the oligomerization of these ligands, which affected signaling. These data suggest that multipoint binding of distal adaptor proteins mediates the formation of oligomeric signaling clusters vital for intracellular signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sedimentation velocity analysis of the interaction of GRB2 and SOS1.
Figure 2: Reverse ITC injections of GRB2 and SOS1.
Figure 3: Relative expression of endogenous GRB2 and SOS1 in Jurkat E6.1 cells.
Figure 4: Sedimentation velocity analysis of the interaction of GRB2, SOS1 and LAT phosphopeptides.
Figure 5: Localization of LAT mutants to signaling clusters.
Figure 6: Effects of expression of SOS1 proline-rich fragments on localization of LAT and PLCG1 to signaling clusters and on TCR-induced Ca2+ influx.
Figure 7: Schematic representation of LAT oligomerization.

Similar content being viewed by others

References

  1. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  Google Scholar 

  2. Grotzinger, J. Molecular mechanisms of cytokine receptor activation. Biochim. Biophys. Acta 1592, 215–223 (2002).

    Article  CAS  Google Scholar 

  3. Breitwieser, G.E. G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circ. Res. 94, 17–27 (2004).

    Article  CAS  Google Scholar 

  4. Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047 (2000).

    CAS  Google Scholar 

  5. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  6. Koretzky, G.A. The role of Grb2-associated proteins in T-cell activation. Immunol. Today 18, 401–406 (1997).

    Article  CAS  Google Scholar 

  7. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  8. Zhu, M., Janssen, E. & Zhang, W. Minimal requirement of tyrosine residues on linker for activation of T cells in T cell activation and thymocyte development. J. Immunol. 170, 325–333 (2003).

    Article  CAS  Google Scholar 

  9. Balbo, A. et al. Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Proc. Natl. Acad. Sci. USA 102, 81–86 (2005).

    Article  CAS  Google Scholar 

  10. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  Google Scholar 

  11. Lemmon, M.A., Ladbury, J.E., Mandiyan, V., Zhou, M. & Schlessinger, J. Independent binding of peptide ligands to the SH2 and SH3 domains of Grb2. J. Biol. Chem. 269, 31653–31658 (1994).

    CAS  PubMed  Google Scholar 

  12. Goudreau, N. et al. NMR structure of the N-terminal SH3 domain of GRB2 and its complex with a proline-rich peptide from Sos. Nat. Struct. Biol. 1, 898–907 (1994).

    Article  CAS  Google Scholar 

  13. Chook, Y.M., Gish, G.D., Kay, C.M., Pai, E.F. & Pawson, T. The Grb2-mSos1 complex binds phosphopeptides with higher affinity than Grb2. J. Biol. Chem. 271, 30472–30478 (1996).

    Article  CAS  Google Scholar 

  14. Houtman, J.C. et al. Binding specificity of multiprotein signaling complexes is determined by both cooperative interactions and affinity preferences. Biochemistry 43, 4170–4178 (2004).

    Article  CAS  Google Scholar 

  15. Gilbert, G.A. & Jenkins, R.C. Boundary problems in the sedimentation and electrophoresis of complex systems in rapid reversible equilibrium. Nature 177, 853–854 (1956).

    Article  CAS  Google Scholar 

  16. Dam, J., Velikovsky, C.A., Mariuzza, R.A., Urbanke, C. & Schuck, P. Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys. J. 89, 619–634 (2005).

    Article  CAS  Google Scholar 

  17. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  Google Scholar 

  18. Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. & Oliver, J.M. High resolution mapping of mast cell membranes reveals primary and secondary domains of Fc(epsilon)RI and LAT. J. Cell Biol. 154, 645–658 (2001).

    Article  CAS  Google Scholar 

  19. Tanimura, N. et al. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J. Cell Biol. 160, 125–135 (2003).

    Article  CAS  Google Scholar 

  20. Harder, T. Lipid raft domains and protein networks in T-cell receptor signal transduction. Curr. Opin. Immunol. 16, 353–359 (2004).

    Article  CAS  Google Scholar 

  21. Egan, S.E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  Google Scholar 

  22. Chardin, P. et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260, 1338–1343 (1993).

    Article  CAS  Google Scholar 

  23. Sastry, L. et al. Quantitative analysis of Grb2-Sos1 interaction: the N-terminal SH3 domain of Grb2 mediates affinity. Oncogene 11, 1107–1112 (1995).

    CAS  PubMed  Google Scholar 

  24. Motto, D.G. et al. In vivo association of Grb2 with pp116, a substrate of the T cell antigen receptor-activated protein tyrosine kinase. J. Biol. Chem. 269, 21608–21613 (1994).

    CAS  PubMed  Google Scholar 

  25. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T. & Bowtell, D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83–85 (1993).

    Article  CAS  Google Scholar 

  26. Maignan, S. et al. Crystal structure of the mammalian Grb2 adaptor. Science 268, 291–293 (1995).

    Article  CAS  Google Scholar 

  27. Yuzawa, S. et al. Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J. Mol. Biol. 306, 527–537 (2001).

    Article  CAS  Google Scholar 

  28. Vidal, M. et al. Design of peptoid analogue dimers and measure of their affinity for Grb2 SH3 domains. Biochemistry 43, 7336–7344 (2004).

    Article  CAS  Google Scholar 

  29. Nunez-Cruz, S. et al. LAT regulates gammadelta T cell homeostasis and differentiation. Nat. Immunol. 4, 999–1008 (2003).

    Article  CAS  Google Scholar 

  30. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem. 275, 23355–23361 (2000).

    Article  CAS  Google Scholar 

  31. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  Google Scholar 

  32. Nagy, P. et al. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J. Cell Sci. 112, 1733–1741 (1999).

    CAS  PubMed  Google Scholar 

  33. Wiley, H.S. Trafficking of the ErbB receptors and its influence on signaling. Exp. Cell Res. 284, 78–88 (2003).

    Article  CAS  Google Scholar 

  34. Xiang, X. et al. 14–3-3 facilitates insulin-stimulated intracellular trafficking of insulin receptor substrate 1. Mol. Endocrinol. 16, 552–562 (2002).

    Article  CAS  Google Scholar 

  35. Sorkin, A. Internalization of the epidermal growth factor receptor: role in signalling. Biochem. Soc. Trans. 29, 480–484 (2001).

    Article  CAS  Google Scholar 

  36. Yamazaki, T. et al. Role of Grb2 in EGF-stimulated EGFR internalization. J. Cell Sci. 115, 1791–1802 (2002).

    CAS  PubMed  Google Scholar 

  37. Luo, J., Field, S.J., Lee, J.Y., Engelman, J.A. & Cantley, L.C. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J. Cell Biol. 170, 455–464 (2005).

    Article  CAS  Google Scholar 

  38. Velazquez Campoy, A. & Freire, E. ITC in the post-genomic era? Priceless. Biophys. Chem. 115, 115–124 (2005).

    Article  CAS  Google Scholar 

  39. Bunnell, S.C., Barr, V.A., Fuller, C.L. & Samelson, L.E. High-resolution multicolor imaging of dynamic signaling complexes in T cells stimulated by planar substrates. Sci. STKE 2003, PL8 (2003).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Piston (Vanderbilt) for providing the mCerulean-C1 vector, W.Y. Langdon (University of Western Australia) for providing the CBL complementary DNA, D. Lowy (National Cancer Institute) for providing the SOS1 cDNA, P.P. Di Fiore (FIRC Institute for Molecular Oncology) for providing the GRB2 cDNA, A. Weiss (University of California at San Francisco) for providing the JCaM 2.5 Jurkat cell line and P. Schwartzberg and J. O'Shea for helpful discussions. This research was supported, in part, by the Intramural Research Program of the US National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

J.C.D.H. contributed to ITC analysis, protein purification, immunoblotting, project concept and manuscript preparation; H.Y. contributed to peptide synthesis; M.B.-S. contributed to imaging analysis; A.B. contributed to Ca2+ influx analysis; B.B. contributed to protein purification; E.A. contributed to peptide synthesis and project concept; P.S. contributed to analytical ultracentrifugation and ITC analyses, project concept and manuscript preparation; and L.E.S. contributed to overall project guidance, project concept and manuscript preparation.

Corresponding author

Correspondence to Lawrence E Samelson.

Supplementary information

Supplementary Fig. 1

ITC analysis of the interaction of Grb2 with Sos1 or LAT. (PDF 32 kb)

Supplementary Fig. 2

SV analysis of the interaction of Grb2, Sos1 and LAT. (PDF 65 kb)

Supplementary Fig. 3

Raw SV profiles of the interaction of Grb2, Sos1 and LAT. (PDF 78 kb)

Supplementary Fig. 4

Effects of LAT mutations on the phosphorylation of signaling proteins. (PDF 31 kb)

Supplementary Methods (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houtman, J., Yamaguchi, H., Barda-Saad, M. et al. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13, 798–805 (2006). https://doi.org/10.1038/nsmb1133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing