Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of a molecular recognition feature in the E1A oncoprotein that binds the SUMO conjugase UBC9 and likely interferes with polySUMOylation

Abstract

Hub proteins have central roles in regulating cellular processes. By targeting a single cellular hub, a viral oncogene may gain control over an entire module in the cellular interaction network that is potentially comprised of hundreds of proteins. The adenovirus E1A oncoprotein is a viral hub that interacts with many cellular hub proteins by short linear motifs/molecular recognition features (MoRFs). These interactions transform the architecture of the cellular protein interaction network and virtually reprogram the cell. To identify additional MoRFs within E1A, we screened portions of E1A for their ability to activate yeast pseudohyphal growth or differentiation. This identified a novel functional region within E1A conserved region 2 comprised of the sequence EVIDLT. This MoRF is necessary and sufficient to bind the N-terminal region of the SUMO conjugase UBC9, which also interacts with SUMO noncovalently and is involved in polySUMOylation. Our results suggest that E1A interferes with polySUMOylation, but not with monoSUMOylation. These data provide the first insight into the consequences of the interaction of E1A with UBC9, which was initially described in 1996. We further demonstrate that polySUMOylation regulates pseudohyphal growth and promyelocytic leukemia body reorganization by E1A. In conclusion, the interaction of the E1A oncogene with UBC9 mimics the normal binding between SUMO and UBC9 and represents a novel mechanism to modulate polySUMOylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Ansieau S, Leutz A . (2002). The conserved Mynd domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J Biol Chem 277: 4906–4910.

    Article  CAS  Google Scholar 

  • Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS . (2004). Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. Virology 329: 477–492.

    Article  CAS  Google Scholar 

  • Avvakumov N, Wheeler R, D'Halluin JC, Mymryk JS . (2002). Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. J Virol 76: 7968–7975.

    Article  CAS  Google Scholar 

  • Bayley ST, Mymryk JS . (1994). Adenovirus E1A proteins and transformation. Int J Oncol 5: 425–444.

    CAS  Google Scholar 

  • Berk AJ . (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24: 7673–7685.

    Article  CAS  Google Scholar 

  • Bernardi R, Pandolfi PP . (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8: 1006–1016.

    Article  CAS  Google Scholar 

  • Bylebyl GR, Belichenko I, Johnson ES . (2003). The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113–44120.

    Article  CAS  Google Scholar 

  • Capili AD, Lima CD . (2007). Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol 369: 608–618.

    Article  CAS  Google Scholar 

  • Chinnadurai G . (2002). CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9: 213–224.

    Article  CAS  Google Scholar 

  • Dellaire G, Bazett-Jones DP . (2004). PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26: 963–977.

    Article  CAS  Google Scholar 

  • Dunnebier T, Bermejo JL, Haas S, Fischer HP, Pierl CB, Justenhoven C et al. (2009). Common variants in the UBC9 gene encoding the SUMO-conjugating enzyme are associated with breast tumor grade. Int J Cancer 125: 596–602.

    Article  Google Scholar 

  • Eskiw CH, Dellaire G, Mymryk JS, Bazett-Jones DP . (2003). Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci 116: 4455–4466.

    Article  CAS  Google Scholar 

  • Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK . (2008). Epigenetic reprogramming by adenovirus E1A. Science 321: 1086–1088.

    Article  CAS  Google Scholar 

  • Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW . (2002). Evolutionary rate in the protein interaction network. Science 296: 750–752.

    Article  CAS  Google Scholar 

  • Frisch SM, Mymryk JS . (2002). Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 3: 441–452.

    Article  CAS  Google Scholar 

  • Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP . (2009). Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462: 935–939.

    Article  CAS  Google Scholar 

  • Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS et al. (2006). Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38: 285–293.

    Article  CAS  Google Scholar 

  • Geiss-Friedlander R, Melchior F . (2007). Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947–956.

    Article  CAS  Google Scholar 

  • Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV et al. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430: 88–93.

    Article  CAS  Google Scholar 

  • Hateboer G, Hijmans EM, Nooij JB, Schlenker S, Jentsch S, Bernards R . (1996). mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect. J Biol Chem 271: 25906–25911.

    Article  CAS  Google Scholar 

  • Jeong H, Mason SP, Barabasi AL, Oltvai ZN . (2001). Lethality and centrality in protein networks. Nature 411: 41–42.

    Article  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  Google Scholar 

  • Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A et al. (2008). Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371–382.

    Article  CAS  Google Scholar 

  • Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK . (2007). Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J 26: 2797–2807.

    Article  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al. (2008). Arsenic degrades PML or PML-RAR alpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555.

    Article  CAS  Google Scholar 

  • Lin D, Tatham MH, Yu B, Kim S, Hay RT, Chen Y . (2002). Identification of a substrate recognition site on Ubc9. J Biol Chem 277: 21740–21748.

    Article  CAS  Google Scholar 

  • Lowe SW, Jacks T, Housman DE, Ruley HE . (1994). Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc Natl Acad Sci USA 91: 2026–2030.

    Article  CAS  Google Scholar 

  • Maslov S, Sneppen K . (2002). Specificity and stability in topology of protein networks. Science 296: 910–913.

    Article  CAS  Google Scholar 

  • Mo YY, Moschos SJ . (2005). Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9: 1203–1216.

    Article  CAS  Google Scholar 

  • Mo YY, Yu Y, Ee PL, Beck WT . (2004). Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 64: 2793–2798.

    Article  CAS  Google Scholar 

  • Morris EJ, Dyson NJ . (2001). Retinoblastoma protein partners. Adv Cancer Res 82: 1–54.

    Article  CAS  Google Scholar 

  • Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A et al. (2009). The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462: 886–890.

    Article  CAS  Google Scholar 

  • Mullen JR, Brill SJ . (2008). Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J Biol Chem 283: 19912–19921.

    Article  CAS  Google Scholar 

  • Mymryk JS, Smith MM . (1997). Influence of the adenovirus 5 E1A oncogene on chromatin remodelling. Biochem Cell Biol 75: 95–102.

    Article  CAS  Google Scholar 

  • O'Connor MJ, Zimmermann H, Nielsen S, Bernard HU, Kouzarides T . (1999). Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 73: 3574–3581.

    CAS  Google Scholar 

  • Pelka P, Ablack JN, Fonseca GJ, Yousef AF, Mymryk JS . (2008). Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol 82: 7252–7263.

    Article  CAS  Google Scholar 

  • Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA et al. (2007). SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26: 4089–4101.

    Article  CAS  Google Scholar 

  • Prudden J, Perry JJ, Arvai AS, Tainer JA, Boddy MN . (2009). Molecular mimicry of SUMO promotes DNA repair. Nat Struct Mol Biol 16: 509–516.

    Article  CAS  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature 437: 1173–1178.

    Article  CAS  Google Scholar 

  • Rupp S, Summers E, Lo H-J, Madhani H, Fink G . (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J 18: 1257–1269.

    Article  CAS  Google Scholar 

  • Saitoh H, Hinchey J . (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258.

    Article  CAS  Google Scholar 

  • Sampson DA, Wang M, Matunis MJ . (2001). The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem 276: 21664–21669.

    Article  CAS  Google Scholar 

  • Schmidt D, Muller S . (2002). Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99: 2872–2877.

    Article  CAS  Google Scholar 

  • Schwienhorst I, Johnson ES, Dohmen RJ . (2000). SUMO conjugation and deconjugation. Mol Gen Genet 263: 771–786.

    Article  CAS  Google Scholar 

  • Sekiyama N, Arita K, Ikeda Y, Hashiguchi K, Ariyoshi M, Tochio H et al. (2009). Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78: 1491–1502.

    Google Scholar 

  • Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y . (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci USA 101: 14373–14378.

    Article  CAS  Google Scholar 

  • Song J, Zhang Z, Hu W, Chen Y . (2005). Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem 280: 40122–40129.

    Article  CAS  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell 122: 957–968.

    Article  CAS  Google Scholar 

  • Sun H, Leverson JD, Hunter T . (2007). Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26: 4102–4112.

    Article  CAS  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538–546.

    Article  CAS  Google Scholar 

  • Trentin JL, Yabe Y, Taylor G . (1962). The quest for human cancer viruses. Science 137: 835–841.

    Article  CAS  Google Scholar 

  • Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M et al. (2007). Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282: 34167–34175.

    Article  CAS  Google Scholar 

  • Wang J, Hu W, Cai S, Lee B, Song J, Chen Y . (2007). The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. Mol Cell 27: 228–237.

    Article  Google Scholar 

  • Weisshaar SR, Keusekotten K, Krause A, Horst C, Springer HM, Gottsche K et al. (2008). Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582: 3174–3178.

    Article  CAS  Google Scholar 

  • Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M . (2007). The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176–34184.

    Article  CAS  Google Scholar 

  • Yousef AF, Xu GW, Mendez M, Brandl CJ, Mymryk JS . (2008). Coactivator requirements for p53-dependent transcription in the yeast Saccharomyces cerevisiae. Int J Cancer 122: 942–946.

    Article  CAS  Google Scholar 

  • Zhang Z, Smith MM, Mymryk JS . (2001). Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 12: 699–710.

    Article  CAS  Google Scholar 

  • Zhu S, Sachdeva M, Wu F, Lu Z, Mo YY . (2009). Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29: 1763–1772.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Canadian Institutes of Health Research to JSM (MOP-75647). AFY and PP were supported by CIHR Strategic Training Program in Cancer Research and Technology Transfer awards. GJF and JNA held OGS and OGSST awards. We thank Drs C Brandl, R Hay, J Taylor, K Uzunova, J Dohmen, A Strunnikov, G Fink, E Yeh and O Janne for generously providing reagents essential for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Mymryk.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yousef, A., Fonseca, G., Pelka, P. et al. Identification of a molecular recognition feature in the E1A oncoprotein that binds the SUMO conjugase UBC9 and likely interferes with polySUMOylation. Oncogene 29, 4693–4704 (2010). https://doi.org/10.1038/onc.2010.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.226

Keywords

This article is cited by

Search

Quick links