Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mitosis as an anti-cancer target

Abstract

Most of the current drugs used to treat cancer can be classified as anti-proliferative drugs. These drugs perturb the proliferative cycle of tumor cells at diverse stages of the cell cycle. Examples of such drugs are DNA-damaging agents and inhibitors of cyclin-dependent kinases that arrest cell cycle progression at different stages of interphase. Another class of anti-proliferative drugs is the so-called anti-mitotic drugs, which selectively perturb progression through mitosis. Mitosis is the shortest and final stage in the cell cycle and has evolved to accurately divide the duplicated genome over the two daughter cells. This review deals with the different strategies that are currently considered to perturb mitotic progression in the treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Allan LA, Clarke PR . (2007). Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26: 301–310.

    CAS  PubMed  Google Scholar 

  • Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S et al. (2004). Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279: 25549–25561.

    CAS  PubMed  Google Scholar 

  • Andreassen PR, Lohez OD, Lacroix FB, Margolis RL . (2001). Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12: 1315–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Jin F, Jeganathan KB, van Deursen JM . (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell 16: 475–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D et al. (2008). Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA 105: 3443–3448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barr FA, Gruneberg U . (2007). Cytokinesis: placing and making the final cut. Cell 131: 847–860.

    CAS  PubMed  Google Scholar 

  • Barr FA, Sillje HH, Nigg EA . (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5: 429–440.

    CAS  PubMed  Google Scholar 

  • Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A et al. (2008). Centrosome amplification can initiate tumorigenesis in flies. Cell 133: 1032–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blangy A, Lane HA, d'Herin P, Harper M, Kress M, Nigg EA . (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83: 1159–1169.

    CAS  PubMed  Google Scholar 

  • Boveri T . (1914). Zur Frage der Entstehung maligner Tumoren. Gustav Fischer: Jena, vol. 1.

  • Brier S, Lemaire D, DeBonis S, Forest E, Kozielski F . (2006). Molecular dissection of the inhibitor binding pocket of mitotic kinesin Eg5 reveals mutants that confer resistance to antimitotic agents. J Mol Biol 360: 360–376.

    CAS  PubMed  Google Scholar 

  • Brinkley BR . (2001). Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 11: 18–21.

    CAS  PubMed  Google Scholar 

  • Brito DA, Rieder CL . (2006). Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16: 1194–1200.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brito DA, Rieder CL . (2009). The ability to survive mitosis in the presence of microtubule poisons differs significantly between human nontransformed (RPE-1) and cancer (U2OS, HeLa) cells. Cell Motil Cytoskeleton 66: 437–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buffin E, Emre D, Karess RE . (2007). Flies without a spindle checkpoint. Nat Cell Biol 9: 565–572.

    CAS  PubMed  Google Scholar 

  • Carmena M, Earnshaw WC . (2003). The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4: 842–854.

    CAS  PubMed  Google Scholar 

  • Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . (2006). A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 38: 1043–1048.

    CAS  PubMed  Google Scholar 

  • Cohen J . (2002). Sorting out chromosome errors. Science 296: 2164–2166.

    CAS  PubMed  Google Scholar 

  • Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P et al. (2010). Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res 70: 10255–10264.

    CAS  PubMed  Google Scholar 

  • Cox CD, Coleman PJ, Breslin MJ, Whitman DB, Garbaccio RM, Fraley ME et al. (2008). Kinesin spindle protein (KSP) inhibitors. 9. Discovery of (2S)-4-(2,5-difluorophenyl)-n-[(3R,4S)-3-fluoro-1-methylpiperidin-4-yl]-2- (hydroxymethyl)-N-methyl-2-phenyl-2,5-dihydro-1H-pyrrole-1-carboxamide (MK-0731) for the treatment of taxane-refractory cancer. J Med Chem 51: 4239–4252.

    CAS  PubMed  Google Scholar 

  • D'Assoro AB, Barrett SL, Folk C, Negron VC, Boeneman K, Busby R et al. (2002a). Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75: 25–34.

    CAS  PubMed  Google Scholar 

  • D'Assoro AB, Lingle WL, Salisbury JL . (2002b). Centrosome amplification and the development of cancer. Oncogene 21: 6146–6153.

    CAS  PubMed  Google Scholar 

  • Degenhardt Y, Lampkin T . (2010). Targeting Polo-like kinase in cancer therapy. Clin Cancer Res 16: 384–389.

    CAS  PubMed  Google Scholar 

  • Ditchfield C, Johnson VL, Tighe A, Ellston R, Haworth C, Johnson T et al. (2003). Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J Cell Biol 161: 267–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doxsey S . (2001). Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2: 688–698.

    CAS  PubMed  Google Scholar 

  • Duesberg P, Li R, Rasnick D, Rausch C, Willer A, Kraemer A et al. (2000). Aneuploidy precedes and segregates with chemical carcinogenesis. Cancer Genet Cytogenet 119: 83–93.

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D . (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043–1047.

    CAS  PubMed  Google Scholar 

  • Fukasawa K . (2007). Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer 7: 911–924.

    CAS  PubMed  Google Scholar 

  • Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS et al. (1996). 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc Natl Acad Sci USA 93: 7081–7084.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D . (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature 460: 278–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Pellman D . (2007). Limiting the proliferation of polyploid cells. Cell 131: 437–440.

    CAS  PubMed  Google Scholar 

  • Ganem NJ, Storchova Z, Pellman D . (2007). Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17: 157–162.

    CAS  PubMed  Google Scholar 

  • Gascoigne KE, Taylor SS . (2008). Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14: 111–122.

    CAS  PubMed  Google Scholar 

  • Godinho SA, Kwon M, Pellman D . (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28: 85–98.

    CAS  PubMed  Google Scholar 

  • Goodin S . (2008). Novel cytotoxic agents: epothilones. Am J Health Syst Pharm 65: S10–S15.

    CAS  PubMed  Google Scholar 

  • Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N et al. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7: 275–286.

    CAS  PubMed  Google Scholar 

  • Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT . (2010). ATM activation by oxidative stress. Science 330: 517–521.

    CAS  PubMed  Google Scholar 

  • Ha GH, Baek KH, Kim HS, Jeong SJ, Kim CM, McKeon F et al. (2007). p53 activation in response to mitotic spindle damage requires signaling via BubR1-mediated phosphorylation. Cancer Res 67: 7155–7164.

    CAS  PubMed  Google Scholar 

  • Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D et al. (2004). Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36: 1159–1161.

    CAS  PubMed  Google Scholar 

  • Harley ME, Allan LA, Sanderson HS, Clarke PR . (2010). Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 29: 2407–2420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T et al. (2004). VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10: 262–267.

    CAS  PubMed  Google Scholar 

  • Harrison MR, Holen KD, Liu G . (2009). Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7: 54–64.

    PubMed  PubMed Central  Google Scholar 

  • Hauf S, Cole RW, LaTerra S, Zimmer C, Schnapp G, Walter R et al. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161: 281–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holland AJ, Cleveland DW . (2009). Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10: 478–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang HC, Shi J, Orth JD, Mitchison TJ . (2009). Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16: 347–358.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huszar D, Theoclitou ME, Skolnik J, Herbst R . (2009). Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev 28: 197–208.

    CAS  PubMed  Google Scholar 

  • Janssen A, Kops GJ, Medema RH . (2009). Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA 106: 19108–19113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan MA, Thrower D, Wilson L . (1991). Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51: 2212–2222.

    CAS  PubMed  Google Scholar 

  • Jordan MA, Toso RJ, Thrower D, Wilson L . (1993). Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90: 9552–9556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan MA, Wilson L . (2004). Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253–265.

    CAS  PubMed  Google Scholar 

  • Kaestner P, Stolz A, Bastians H . (2009). Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol Cancer Ther 8: 2046–2056.

    CAS  PubMed  Google Scholar 

  • Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M . (2000). Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10: 1172–1181.

    CAS  PubMed  Google Scholar 

  • Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ . (2000). Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150: 975–988.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keen N, Taylor S . (2009). Mitotic drivers—inhibitors of the aurora B kinase. Cancer Metastasis Rev 28: 185–195.

    CAS  PubMed  Google Scholar 

  • Khodjakov A, Rieder CL, Sluder G, Cassels G, Sibon O, Wang CL . (2002). De novo formation of centrosomes in vertebrate cells arrested during S phase. J Cell Biol 158: 1171–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitzen JJ, de Jonge MJ, Verweij J . (2010). Aurora kinase inhibitors. Crit Rev Oncol Hematol 73: 99–110.

    CAS  PubMed  Google Scholar 

  • Kops GJ . (2008). The kinetochore and spindle checkpoint in mammals. Front Biosci 13: 3606–3620.

    CAS  PubMed  Google Scholar 

  • Kops GJ, Foltz DR, Cleveland DW . (2004). Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 101: 8699–8704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW . (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5: 773–785.

    CAS  PubMed  Google Scholar 

  • Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M et al. (2010). Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol 6: 359–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22: 2189–2203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B . (1997). Genetic instability in colorectal cancers. Nature 386: 623–627.

    CAS  PubMed  Google Scholar 

  • Lens SM, Voest EE, Medema RH . (2010). Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10: 825–841.

    CAS  PubMed  Google Scholar 

  • LeRoy PJ, Hunter JJ, Hoar KM, Burke KE, Shinde V, Ruan J et al. (2007). Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 67: 5362–5370.

    CAS  PubMed  Google Scholar 

  • Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z et al. (2010). The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA 107: 14188–14193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lok W, Klein RQ, Saif MW . (2010). Aurora kinase inhibitors as anti-cancer therapy. Anticancer Drugs 21: 339–350.

    CAS  PubMed  Google Scholar 

  • Maliga Z, Mitchison TJ . (2006). Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. BMC Chem Biol 6: 2.

    PubMed  PubMed Central  Google Scholar 

  • Manchado E, Guillamot M, de Carcer G, Eguren M, Trickey M, Garcia-Higuera I et al. (2010). Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55alpha,delta phosphatase. Cancer Cell 18: 641–654.

    CAS  PubMed  Google Scholar 

  • Manfredi JJ, Horwitz SB . (1984). Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther 25: 83–125.

    CAS  PubMed  Google Scholar 

  • Marcus AI, Peters U, Thomas SL, Garrett S, Zelnak A, Kapoor TM et al. (2005). Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J Biol Chem 280: 11569–11577.

    CAS  PubMed  Google Scholar 

  • Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ . (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286: 971–974.

    CAS  PubMed  Google Scholar 

  • Mazumdar M, Lee JH, Sengupta K, Ried T, Rane S, Misteli T . (2006). Tumor formation via loss of a molecular motor protein. Curr Biol 16: 1559–1564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meraldi P, Honda R, Nigg EA . (2002). Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 21: 483–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel L, Diaz-Rodriguez E, Narayan G, Hernando E, Murty VV, Benezra R . (2004). Complete loss of the tumor suppressor MAD2 causes premature cyclin B degradation and mitotic failure in human somatic cells. Proc Natl Acad Sci USA 101: 4459–4464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409: 355–359.

    CAS  PubMed  Google Scholar 

  • Nigg EA . (2002). Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2: 815–825.

    CAS  PubMed  Google Scholar 

  • Oke A, Pearce D, Wilkinson RW, Crafter C, Odedra R, Cavenagh J et al. (2009). AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells in vitro and in vivo. Cancer Res 69: 4150–4158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olaharski AJ, Sotelo R, Solorza-Luna G, Gonsebatt ME, Guzman P, Mohar A et al. (2006). Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27: 337–343.

    CAS  PubMed  Google Scholar 

  • Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ . (2001). Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 61: 2212–2219.

    CAS  PubMed  Google Scholar 

  • Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS . (2005). Spindle multipolarity is prevented by centrosomal clustering. Science 307: 127–129.

    CAS  PubMed  Google Scholar 

  • Rieder CL, Maiato H . (2004). Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7: 637–651.

    CAS  PubMed  Google Scholar 

  • Rieder CL, Medema RH . (2009). No way out for tumor cells. Cancer Cell 16: 274–275.

    CAS  PubMed  Google Scholar 

  • Ring D, Hubble R, Kirschner M . (1982). Mitosis in a cell with multiple centrioles. J Cell Biol 94: 549–556.

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Donehower RC, Jones RJ, Tucker RW . (1988). Microtubule changes and cytotoxicity in leukemic cell lines treated with taxol. Cancer Res 48: 4093–4100.

    CAS  PubMed  Google Scholar 

  • Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC . (1993). Clinical toxicities encountered with paclitaxel (Taxol). Semin Oncol 20: 1–15.

    CAS  PubMed  Google Scholar 

  • Rusan NM, Peifer M . (2008). Original CIN: reviewing roles for APC in chromosome instability. J Cell Biol 181: 719–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakowicz R, Finer JT, Beraud C, Crompton A, Lewis E, Fritsch A et al. (2004). Antitumor activity of a kinesin inhibitor. Cancer Res 64: 3276–3280.

    CAS  PubMed  Google Scholar 

  • Santaguida S, Tighe A, D'Alise AM, Taylor SS, Musacchio A . (2010). Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine. J Cell Biol 190: 73–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Mizumoto K, Nakamura M, Maehara N, Minamishima YA, Nishio S et al. (2001). Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet 126: 13–19.

    CAS  PubMed  Google Scholar 

  • Sawin KE, LeGuellec K, Philippe M, Mitchison TJ . (1992). Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359: 540–543.

    CAS  PubMed  Google Scholar 

  • Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A et al. (2007). Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 6: 1317–1328.

    CAS  PubMed  Google Scholar 

  • Schmidt M, Medema RH . (2006). Exploiting the compromised spindle assembly checkpoint function of tumor cells: dawn on the horizon? Cell Cycle 5: 159–163.

    CAS  PubMed  Google Scholar 

  • Schoffski P . (2009). Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14: 559–570.

    CAS  PubMed  Google Scholar 

  • Schvartzman JM, Sotillo R, Benezra R . (2010). Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat Rev Cancer 10: 102–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Orth JD, Mitchison T . (2008). Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5. Cancer Res 68: 3269–3276.

    CAS  PubMed  Google Scholar 

  • Shi Q, King RW . (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437: 1038–1042.

    CAS  PubMed  Google Scholar 

  • Silkworth WT, Nardi IK, Scholl LM, Cimini D . (2009). Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4: e6564.

    PubMed  PubMed Central  Google Scholar 

  • Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M et al. (2007). BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17: 316–322.

    CAS  PubMed  Google Scholar 

  • Stobbe CC, Park SJ, Chapman JD . (2002). The radiation hypersensitivity of cells at mitosis. Int J Radiat Biol 78: 1149–1157.

    CAS  PubMed  Google Scholar 

  • Strebhardt K, Ullrich A . (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6: 321–330.

    CAS  PubMed  Google Scholar 

  • Tanenbaum ME, Macurek L, Janssen A, Geers EF, Alvarez-Fernandez M, Medema RH . (2009). Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19: 1703–1711.

    CAS  PubMed  Google Scholar 

  • Tcherniuk S, van Lis R, Kozielski F, Skoufias DA . (2010). Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem Pharmacol 79: 864–872.

    CAS  PubMed  Google Scholar 

  • Terrano DT, Upreti M, Chambers TC . (2010). Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 30: 640–656.

    CAS  PubMed  Google Scholar 

  • Thompson SL, Bakhoum SF, Compton DA . (2010). Mechanisms of chromosomal instability. Curr Biol 20: R285–R295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SL, Compton DA . (2008). Examining the link between chromosomal instability and aneuploidy in human cells. J Cell Biol 180: 665–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson SL, Compton DA . (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188: 369–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EM, Dephoure N, Panneerselvam A, Tucker CM, Whittaker CA, Gygi SP et al. (2010). Identification of aneuploidy-tolerating mutations. Cell 143: 71–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317: 916–924.

    CAS  PubMed  Google Scholar 

  • Torres EM, Williams BR, Amon A . (2008). Aneuploidy: cells losing their balance. Genetics 179: 737–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuxen MK, Hansen SW . (1994). Neurotoxicity secondary to antineoplastic drugs. Cancer Treat Rev 20: 191–214.

    CAS  PubMed  Google Scholar 

  • Uetake Y, Loncarek J, Nordberg JJ, English CN, La Terra S, Khodjakov A et al. (2007). Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J Cell Biol 176: 173–182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uetake Y, Sluder G . (2004). Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a ‘tetraploidy checkpoint’. J Cell Biol 165: 609–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uetake Y, Sluder G . (2010). Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr Biol 20: 1666–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vader G, Medema RH, Lens SM . (2006). The chromosomal passenger complex: guiding aurora-B through mitosis. J Cell Biol 173: 833–837.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanneste D, Takagi M, Imamoto N, Vernos I . (2009). The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19: 1712–1717.

    CAS  PubMed  Google Scholar 

  • Vantieghem A, Xu Y, Assefa Z, Piette J, Vandenheede JR, Merlevede W et al. (2002). Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis. J Biol Chem 277: 37718–37731.

    CAS  PubMed  Google Scholar 

  • Vitale I, Senovilla L, Galluzzi L, Criollo A, Vivet S, Castedo M et al. (2008). Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells. Cell Cycle 7: 1956–1961.

    CAS  PubMed  Google Scholar 

  • Wang Z, Cummins JM, Shen D, Cahill DP, Jallepalli PV, Wang TL et al. (2004). Three classes of genes mutated in colorectal cancers with chromosomal instability. Cancer Res 64: 2998–3001.

    CAS  PubMed  Google Scholar 

  • Weaver BA, Cleveland DW . (2006). Does aneuploidy cause cancer? Curr Opin Cell Biol 18: 658–667.

    CAS  PubMed  Google Scholar 

  • Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW . (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11: 25–36.

    CAS  PubMed  Google Scholar 

  • Westra A, Dewey WC . (1971). Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 19: 467–477.

    CAS  PubMed  Google Scholar 

  • Wilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, Crafter C et al. (2007). AZD1152, a selective inhibitor of aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13: 3682–3688.

    CAS  PubMed  Google Scholar 

  • Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322: 703–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C, Stearns T . (2005). Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6: 6.

    PubMed  PubMed Central  Google Scholar 

  • Wood KW, Lad L, Luo L, Qian X, Knight SD, Nevins N et al. (2010). Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci USA 107: 5839–5844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Ma CA, Zhao Y, Jain A . (2011). Aurora B interacts with NIR-p53, leading to p53 phosphorylation in its DNA-binding domain and subsequent functional suppression. J Biol Chem 286: 2236–2244.

    CAS  PubMed  Google Scholar 

  • Yang Z, Loncarek J, Khodjakov A, Rieder CL . (2008). Extra centrosomes and/or chromosomes prolong mitosis in human cells. Nat Cell Biol 10: 748–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW . (2000). CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2: 484–491.

    CAS  PubMed  Google Scholar 

  • Yue QX, Liu X, Guo DA . (2010). Microtubule-binding natural products for cancer therapy. Planta Med 76: 1037–1043.

    CAS  PubMed  Google Scholar 

  • Yuen KW, Montpetit B, Hieter P . (2005). The kinetochore and cancer: what's the connection? Curr Opin Cell Biol 17: 576–582.

    CAS  PubMed  Google Scholar 

  • Zeng X, Sigoillot F, Gaur S, Choi S, Pfaff KL, Oh DC et al. (2010). Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18: 382–395.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Medema.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, A., Medema, R. Mitosis as an anti-cancer target. Oncogene 30, 2799–2809 (2011). https://doi.org/10.1038/onc.2011.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.30

Keywords

This article is cited by

Search

Quick links