Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hic-5 controls BMP4 responses in prostate cancer cells through interacting with Smads 1, 5 and 8

Abstract

Hydrogen peroxide-inducible clone-5 (Hic-5, or androgen receptor-associated protein 55) is a transforming growth factor-β-inducible LIM protein whose deregulation is implicated in the progression of prostate cancer. Here, we report that Hic-5 binds to Smads 1, 5 and 8, and represses bone morphogenetic protein (BMP) signaling responses. Myc-Hic-5 but not Myc-paxillin was specifically immunoprecipitated with anti-FLAG IgG1 from lysates of HEK293 co-transfected with either Myc-Hic-5 or Myc-paxillin and FLAG-tagged Smads 1, 5 or 8. We showed that such interactions require the LIM3 domain of Hic-5 and the MH2 domain of those Smads. Anti-Hic-5 antibody specifically pulled down endogenous Smad1 in both the PC3 human prostate cell line and primary cultures of rat prostate fibroblasts, supporting that Hic-5 binds to Smad1 at the endogenous level. Bacterially expressed glutathione S-transferase (GST)–Smads 1, 5 or 8, but not GST alone, pulled down in vitro transcribed and translated Hic-5, implicating that Hic-5 binds directly to Smads 1, 5 and 8. Significantly, using Hic-5 small hairpin RNA silencing and overexpression systems, we show that Hic-5 (at both the endogenous and exogenous levels) represses the ability of BMP4 to induce expression of the inhibitor of differentiation-1 (Id1; a downstream target gene of BMP), activate the Id1 gene promoter and induce apoptosis in human and rat prostate epithelial cells. Moreover, silencing of Hic-5 in PC3 cells as well as in the WPMY-1 human prostate stroma cell line greatly enhances the levels of endogenous phospho-Smad1/5/8. Finally, we provide fluorescent microscopic imaging to support that Smad1 and Hic-5 mutually interact also at the level of their nuclear export mechanisms. Collectively, these results provide the first evidence for a physical and mutual functional interaction between Hic-5 and the BMP signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alarmo EL, Kallioniemi A . (2010). Bone morphogenetic proteins in breast cancer: dual role in tumourigenesis? Endocr Relat Cancer 17: R123–R139.

    Article  CAS  Google Scholar 

  • Barnes J, Anthony CT, Wall N, Steiner MS . (1995). Bone morphogenetic protein-6 expression in normal and malignant prostate. World J Urol 13: 337–343.

    Article  CAS  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303: 848–851.

    Article  CAS  Google Scholar 

  • Bobinac D, Maric I, Zoricic S, Spanjol J, Dordevic G, Mustac E et al. (2005). Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J 46: 389–396.

    Google Scholar 

  • Chipuk JE, Stewart LV, Ranieri A, Song K, Danielpour D . (2002). Identification and characterization of a novel rat ov-serpin family member, trespin. J Biol Chem 277: 26412–26421.

    Article  CAS  Google Scholar 

  • Corey E, Vessella RL . (2007). Bone morphogenetic proteins and prostate cancer: evolving complexities. J Urol 178: 750–751.

    Article  Google Scholar 

  • Csiszar A, Labinskyy N, Jo H, Ballabh P, Ungvari Z . (2008). Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. Am J Physiol Heart Circ Physiol 295: H569–H577.

    Article  CAS  Google Scholar 

  • Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS et al. (2008). Structure-activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorg Med Chem Lett 18: 4388–4392.

    Article  CAS  Google Scholar 

  • Dabiri G, Tumbarello DA, Turner CE, Van de Water L . (2008). Hic-5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF-beta1 autocrine loop. J Invest Dermatol 128: 2518–2525.

    Article  CAS  Google Scholar 

  • Danielpour D, Kadomatsu K, Anzano MA, Smith JM, Sporn MB . (1994). Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate. Cancer Res 54: 3413–3421.

    CAS  Google Scholar 

  • Drori S, Girnun GD, Tou L, Szwaya JD, Mueller E, Xia K et al. (2005). Hic-5 regulates an epithelial program mediated by PPARgamma. Genes Dev 19: 362–375.

    Article  CAS  Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C . (2007). Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121: 2381–2386.

    Article  CAS  Google Scholar 

  • Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M . (2006). BMP-4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death Differ 13: 1075–1087.

    Article  CAS  Google Scholar 

  • Gao Z, Schwartz LM . (2005). Identification and analysis of Hic-5/ARA55 isoforms: implications for integrin signaling and steroid hormone action. FEBS Lett 579: 5651–5657.

    Article  CAS  Google Scholar 

  • Gao ZL, Deblis R, Glenn H, Schwartz LM . (2007). Differential roles of HIC-5 isoforms in the regulation of cell death and myotube formation during myogenesis. Exp Cell Res 313: 4000–4014.

    Article  CAS  Google Scholar 

  • Ghogomu SM, van Venrooy S, Ritthaler M, Wedlich D, Gradl D . (2006). HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. J Biol Chem 281: 1755–1764.

    Article  CAS  Google Scholar 

  • Heitzer MD, DeFranco DB . (2006). Mechanism of action of Hic-5/androgen receptor activator 55, a LIM domain-containing nuclear receptor coactivator. Mol Endocrinol 20: 56–64.

    Article  CAS  Google Scholar 

  • Heitzer MD, DeFranco DB . (2007). Hic-5/ARA55: a prostate stroma-specific AR coactivator. Steroids 72: 218–220.

    Article  CAS  Google Scholar 

  • Hornigold N, Craven RA, Keen JN, Johnson T, Banks RE, Mooney AF . (2010). Upregulation of Hic-5 in glomerulosclerosis and its regulation of mesangial cell apoptosis. Kidney Int 77: 329–338.

    Article  CAS  Google Scholar 

  • Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM et al. (2001). Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28: 184–187.

    Article  CAS  Google Scholar 

  • Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D . (2005). Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev 24: 251–263.

    Article  CAS  Google Scholar 

  • Katagiri T, Imada M, Yanai T, Suda T, Takahashi N, Kamijo R (2002). Identification of a BMP-responsive element in Id1, the gene for inhibition of myogenesis. Genes Cells 7: 949–960.

    Article  CAS  Google Scholar 

  • Li X, Martinez-Ferrer M, Botta V, Uwamariya C, Banerjee J, Bhowmick NA . (2010). Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness. Oncogene 30: 167–177.

    Article  Google Scholar 

  • Li ZL, Liu RH, Kong CZ . (2006). [Significance of expressions of bone morphogenetic protein 2 and 4 in prostatic carcinoma]. Zhonghua Nan Ke Xue 12: 126–128, 132.

    CAS  Google Scholar 

  • Masuda H, Fukabori Y, Nakano K, Takezawa Y, Suzuki CT, Yamanaka H . (2003). Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate 54: 268–274.

    Article  CAS  Google Scholar 

  • Miyazono K, Kamiya Y, Morikawa M . (2010). Bone morphogenetic protein receptors and signal transduction. J Biochem 147: 35–51.

    Article  CAS  Google Scholar 

  • Miyoshi Y, Ishiguro H, Uemura H, Fujinami K, Miyamoto H, Kitamura H et al. (2003). Expression of AR associated protein 55 (ARA55) and androgen receptor in prostate cancer. Prostate 56: 280–286.

    Article  CAS  Google Scholar 

  • Mori K, Hirao E, Toya Y, Oshima Y, Ishikawa F, Nose K et al. (2009). Competitive nuclear export of cyclin D1 and Hic-5 regulates anchorage dependence of cell growth and survival. Mol Biol Cell 20: 218–232.

    Article  CAS  Google Scholar 

  • Przybyszewski WM, Rzeszowska-Wolny J . (2009). Oxidative stress in prostate hypertrophy and carcinogenesis. Postepy Hig Med Dosw (Online) 63: 340–350.

    Google Scholar 

  • Rahman MM, Miyamoto H, Lardy H, Chang C . (2003). Inactivation of androgen receptor coregulator ARA55 inhibits androgen receptor activity and agonist effect of antiandrogens in prostate cancer cells. Proc Natl Acad Sci USA 100: 5124–5129.

    Article  CAS  Google Scholar 

  • Schimenti KJ, Jacobberger JW . (1992). Fixation of mammalian cells for flow cytometric evaluation of DNA content and nuclear immunofluorescence. Cytometry 13: 48–59.

    Article  CAS  Google Scholar 

  • Shibanuma M, Kim-Kaneyama JR, Ishino K, Sakamoto N, Hishiki T, Yamaguchi K et al. (2003). Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol Biol Cell 14: 1158–1171.

    Article  CAS  Google Scholar 

  • Shibanuma M, Kim-Kaneyama JR, Sato S, Nose K . (2004). A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J Cell Biochem 91: 633–645.

    Article  CAS  Google Scholar 

  • Shibanuma M, Mochizuki E, Maniwa R, Mashimo J, Nishiya N, Imai S et al. (1997). Induction of senescence-like phenotypes by forced expression of hic-5, which encodes a novel LIM motif protein, in immortalized human fibroblasts. Mol Cell Biol 17: 1224–1235.

    Article  CAS  Google Scholar 

  • Song K, Cornelius SC, Danielpour D . (2003). Development and characterization of DP-153, a nontumorigenic prostatic cell line that undergoes malignant transformation by expression of dominant-negative transforming growth factor beta receptor type II. Cancer Res 63: 4358–4367.

    CAS  Google Scholar 

  • Terada N, Shimizu Y, Kamba T, Inoue T, Maeno A, Kobayashi T et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Res 70: 1606–1615.

    Article  CAS  Google Scholar 

  • Thomas SM, Hagel M, Turner CE . (1999). Characterization of a focal adhesion protein, Hic-5, that shares extensive homology with paxillin. J Cell Sci 112 (Pt 2): 181–190.

    CAS  Google Scholar 

  • Trousse F, Esteve P, Bovolenta P . (2001). Bmp4 mediates apoptotic cell death in the developing chick eye. J Neurosci 21: 1292–1301.

    Article  CAS  Google Scholar 

  • Tumbarello DA, Turner CE . (2007). Hic-5 contributes to epithelial-mesenchymal transformation through a RhoA/ROCK-dependent pathway. J Cell Physiol 211: 736–747.

    Article  CAS  Google Scholar 

  • Wahdan-Alaswad RS, Song K, Krebs TL, Shola DT, Gomez JA, Matsuyama S et al. (2010). Insulin-like growth factor I suppresses bone morphogenetic protein signaling in prostate cancer cells by activating mTOR signaling. Cancer Res 70: 9106–9117.

    Article  CAS  Google Scholar 

  • Wang H, Song K, Krebs TL, Yang J, Danielpour D . (2008). Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55. Oncogene 27: 6791–6805.

    Article  CAS  Google Scholar 

  • Wang H, Song K, Sponseller TL, Danielpour D . (2005). Novel function of androgen receptor-associated protein 55/Hic-5 as a negative regulator of Smad3 signaling. J Biol Chem 280: 5154–5162.

    Article  CAS  Google Scholar 

  • Wong WT, Tian XY, Chen Y, Leung FP, Liu L, Lee HK et al. (2010). Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: implications on hypertension. Circ Res 107: 984–991.

    Article  CAS  Google Scholar 

  • Yang J, Song K, Krebs TL, Jackson MW, Danielpour D . (2008). Rb/E2F4 and Smad2/3 link survivin to TGF-beta-induced apoptosis and tumor progression. Oncogene 27: 5326–5338.

    Article  CAS  Google Scholar 

  • Ye L, Lewis-Russell JM, Kynaston H, Jiang WG . (2007). Endogenous bone morphogenetic protein-7 controls the motility of prostate cancer cells through regulation of bone morphogenetic protein antagonists. J Urol 178: 1086–1091.

    Article  CAS  Google Scholar 

  • Yeh S, Chang HC, Miyamoto H, Takatera H, Rahman M, Kang HY et al. (1999). Differential induction of the androgen receptor transcriptional activity by selective androgen receptor coactivators. Keio J Med 48: 87–92.

    Article  CAS  Google Scholar 

  • Yoshida T, Kinoshita H, Segawa T, Nakamura E, Inoue T, Shimizu Y et al. (2005). Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Res 65: 9611–9616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants R01CA102074 and R01CA134878 (D Danielpour), a pre-doctoral fellowship (R Wahdan-Alaswad) from Case Comprehensive Cancer Center's Research Oncology Training Grant 5T32CA059366-15 and National Research Service Award Individual Fellowship Application 1F31CA142311, and the Case Comprehensive Cancer Center P30CA43703 (for the Cytometry Core facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Danielpour.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shola, D., Wang, H., Wahdan-Alaswad, R. et al. Hic-5 controls BMP4 responses in prostate cancer cells through interacting with Smads 1, 5 and 8. Oncogene 31, 2480–2490 (2012). https://doi.org/10.1038/onc.2011.422

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.422

Keywords

This article is cited by

Search

Quick links