Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acetylation controls Notch3 stability and function in T-cell leukemia

Abstract

Post-translational modifications of Notch3 and their functional role with respect to Notch3 overexpression in T-cell leukemia are still poorly understood. We identify here a specific novel property of Notch3 that is acetylated and deacetylated at lysines 1692 and 1731 by p300 and HDAC1, respectively, a balance impaired by HDAC inhibitors (HDACi) that favor hyperacetylation. By using HDACi and a non-acetylatable Notch3 mutant carrying K/R1692−1731 mutations in the intracellular domain, we show that Notch3 acetylation primes ubiquitination and proteasomal-mediated degradation of the protein. As a consequence, Notch3 protein expression and its transcriptional activity are decreased both in vitro and in vivo in Notch3 transgenic (tg) mice, thus impairing downstream signaling upon target genes. Consistently, Notch3-induced T-cell proliferation is inhibited by HDACi, whereas it is enhanced by the non-acetylatable Notch3-K/R1692−1731 mutant. Finally, HDACi-induced Notch3 hyperacetylation prevents in vivo growth of T-cell leukemia/lymphoma in Notch3 tg mice. Together, our findings suggest a novel level of Notch signaling control in which Notch3 acetylation/deacetylation process represents a key regulatory switch, thus representing a suitable druggable target for Notch3-sustained T-cell acute lymphoblastic leukemia therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aifantis I, Raetz E, Buonamici S . (2008). Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8: 380–390.

    Article  CAS  PubMed  Google Scholar 

  • Anastasi E, Campese AF, Bellavia D, Bulotta A, Balestri A, Pascucci M et al. (2003). Expression of activated Notch3 in transgenic mice enhances generation of T regulatory cells and protects against experimental autoimmune diabetes. J Immunol 171: 4504–4511.

    Article  CAS  PubMed  Google Scholar 

  • Barbarulo A, Grazioli P, Campese AF, Bellavia D, Di Mario G, Pelullo M et al. (2011). Notch3 and canonical NF-{kappa}B signaling pathways cooperatively regulate Foxp3 transcription. J Immunol 186: 6199–6206.

    Article  CAS  PubMed  Google Scholar 

  • Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. (2000). Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 19: 3337–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Campese AF, Checquolo S, Balestri A, Biondi A, Cazzaniga G et al. (2002). Combined expression of pTalpha and Notch3 in T cell leukemia identifies the requirement of preTCR for leukemogenesis. Proc Natl Acad Sci USA 99: 3788–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L et al. (2007). Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 26: 1670–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beverly LJ, Felsher DW, Capobianco AJ . (2005). Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 65: 7159–7168.

    CAS  PubMed  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW . (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5: 769–784.

    CAS  PubMed  Google Scholar 

  • Bots Jr M . (2009). Rational combinations using HDAC inhibitors. Clin Cancer Res 15: 3970–3977.

    Article  CAS  PubMed  Google Scholar 

  • Buchwald M, Kramer OH, Heinzel T . (2009). HDACi--targets beyond chromatin. Cancer Lett 280: 160–167.

    CAS  PubMed  Google Scholar 

  • Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P et al. (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12: 132–142.

    Article  CAS  PubMed  Google Scholar 

  • Checquolo S, Palermo R, Cialfi S, Ferrara G, Oliviero C, Talora C et al. (2010). Differential subcellular localization regulates c-Cbl E3 ligase activity upon Notch3 protein in T-cell leukemia. Oncogene 29: 1463–1474.

    Article  CAS  PubMed  Google Scholar 

  • Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G et al. (2010). NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia 24: 2023–2031.

    Article  CAS  PubMed  Google Scholar 

  • Felli MP, Vacca A, Calce A, Bellavia D, Campese AF, Grillo R et al. (2005). PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24: 992–1000.

    Article  CAS  PubMed  Google Scholar 

  • Galbiati L, Mendoza-Maldonado R, Gutierrez MI, Giacca M . (2005). Regulation of E2F-1 after DNA damage by p300-mediated acetylation and ubiquitination. Cell Cycle 4: 930–939.

    Article  CAS  PubMed  Google Scholar 

  • Grozinger CM, Schreiber SL . (2002). Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 9: 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Guarani V, Deflorian G, Franco CA, Kruger M, Phng LK, Bentley K et al. (2011). Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473: 234–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H et al. (2006). Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25: 3264–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ianari A, Gallo R, Palma M, Alesse E, Gulino A . (2004). Specific role for p300/CREB-binding protein-associated factor activity in E2F1 stabilization in response to DNA damage. J Biol Chem 279: 30830–30835.

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Minucci S, Pelicci PG . (2005a). Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 4: 741–743.

    Article  CAS  PubMed  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A et al. (2005b). Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11: 71–76.

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Ann EJ, Kim JY, Mo JS, Park JH, Kim SY et al. (2007). Tip60 histone acetyltransferase acts as a negative regulator of Notch1 signaling by means of acetylation. Mol Cell Biol 27: 6506–6519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G et al. (2002). Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21: 2672–2681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. (2006). p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25: 4147–4154.

    Article  CAS  PubMed  Google Scholar 

  • Mateo F, Vidal-Laliena M, Canela N, Busino L, Martinez-Balbas MA, Pagano M et al. (2009). Degradation of cyclin A is regulated by acetylation. Oncogene 28: 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  • Mercurio C, Minucci S, Pelicci PG . (2010). Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 62: 18–34.

    Article  CAS  PubMed  Google Scholar 

  • Minucci S, Pelicci PG . (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51.

    Article  CAS  PubMed  Google Scholar 

  • Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL et al. (2011). A SIRT1-LSD1 corepressor complex regulates notch target gene expression and development. Mol Cell 42: 689–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. (2005). Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11: 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183: 2283–2291.

    Article  CAS  PubMed  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    Article  CAS  PubMed  Google Scholar 

  • Piekarz RL, Sackett DL, Bates SE . (2007). Histone deacetylase inhibitors and demethylating agents: clinical development of histone deacetylase inhibitors for cancer therapy. Cancer J 13: 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH et al. (1997). Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1: 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Screpanti I, Bellavia D, Campese AF, Frati L, Gulino A . (2003). Notch, a unifying target in T-cell acute lymphoblastic leukemia? Trends Mol Med 9: 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Stockhausen MT, Sjolund J, Manetopoulos C, Axelson H . (2005). Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer 92: 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talora C, Campese AF, Bellavia D, Pascucci M, Checquolo S, Groppioni M et al. (2003). Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep 4: 1067–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talora C, Cialfi S, Oliviero C, Palermo R, Pascucci M, Frati L et al. (2006). Cross talk among Notch3, pre-TCR, and Tal1 in T-cell development and leukemogenesis. Blood 107: 3313–3320.

    Article  CAS  PubMed  Google Scholar 

  • Talora C, Sgroi DC, Crum CP, Dotto GP . (2002). Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 16: 2252–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsapis M, Lieb M, Manzo F, Shankaranarayanan P, Herbrecht R, Lutz P et al. (2007). HDAC inhibitors induce apoptosis in glucocorticoid-resistant acute lymphatic leukemia cells despite a switch from the extrinsic to the intrinsic death pathway. Int J Biochem Cell Biol 39: 1500–1509.

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M et al. (2006). Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J 25: 1000–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD et al. (2010). Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17: 427–442.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Sonia Coni for experimental support. This work was supported by the Italian Association for Cancer Research (AIRC), the Italian Ministry of University and Research (MIUR), PRIN and FIRB Programs, the Italian Ministry of Health, the European Union (NotchIT ITN Project; FP7-MC-ITN 215761), Eleonora Lorillard Spencer Cenci Foundation and the Fondazione Roma (fellowship to RP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Vacca or I Screpanti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palermo, R., Checquolo, S., Giovenco, A. et al. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 31, 3807–3817 (2012). https://doi.org/10.1038/onc.2011.533

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.533

Keywords

This article is cited by

Search

Quick links