Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis

Abstract

High expression of Ankyrin Repeat Domain 1 (ANKRD1) in ovarian carcinoma is associated with poor survival, and in ovarian cancer cell lines is associated with platinum resistance. Importantly, decreasing ANKRD1 expression using siRNA increases cisplatin sensitivity. In this study, we investigated possible mechanisms underlying the association of ANKRD1 with cisplatin response. We first demonstrated that cisplatin-induced apoptosis in ovarian cancer cell lines was associated with endoplasmic reticulum (ER) stress, evidenced by induction of Glucose-Regulated Protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and increased intracellular Ca2+ release. The level of sensitivity to cisplatin-induced apoptosis was associated with ANKRD1 protein levels and poly (ADP-ribose) polymerase (PARP) cleavage. COLO 316 ovarian cancer cells, which express high ANKRD1 levels, were relatively resistant to cisplatin, and ER stress-induced apoptosis, whereas OAW42 and PEO14 cells, which express lower ANKRD1 levels, are more sensitive to ER stress-induced apoptosis. Furthermore, we show that overexpression of ANKRD1 attenuated cisplatin-induced cytotoxicity, and conversely siRNA knockdown of ANKRD1 sensitized ovarian cancer cells to cisplatin and ER stress-induced apoptosis associated with induction of GADD153, and downregulation of BCL2 and BCL-XL. Taken together, these results suggest that ANKRD1 has a significant role in the regulation of apoptosis in human ovarian cancer cells, and is a potential molecular target to enhance sensitivity of ovarian cancer to chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Guminski AD, Harnett PR, deFazio A . Scientists and clinicians test their metal-back to the future with platinum compounds. Lancet Oncol 2002; 3: 312–318.

    Article  PubMed  Google Scholar 

  2. Sasaki H, Sheng Y, Kotsuji F, Tsang BK . Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 2000; 60: 5659–5666.

    CAS  PubMed  Google Scholar 

  3. Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M et al. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology 2001; 142: 370–380.

    Article  CAS  PubMed  Google Scholar 

  4. Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB . Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002; 62: 1087–1092.

    CAS  PubMed  Google Scholar 

  5. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV, Cheng JQ . AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance. J Biol Chem 2003; 278: 23432–23440.

    Article  CAS  PubMed  Google Scholar 

  6. Chen R, Dai RY, Duan CY, Liu YP, Chen SK, Yan DM et al. Unfolded protein response suppresses cisplatin-induced apoptosis via autophagy regulation in human hepatocellular carcinoma cells. Folia Biol (Praha) 2011; 57: 87–95.

    CAS  Google Scholar 

  7. Gorlach A, Klappa P, Kietzmann T . The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 2006; 8: 1391–1418.

    Article  PubMed  Google Scholar 

  8. Ermak G, Davies KJ . Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38: 713–721.

    Article  CAS  PubMed  Google Scholar 

  9. Ma Y, Hendershot LM . The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 2004; 4: 966–977.

    Article  CAS  PubMed  Google Scholar 

  10. Mandic A, Hansson J, Linder S, Shoshan MC . Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 2003; 278: 9100–9106.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang CC, Mao ZG, Avery-Kiejda KA, Wade M, Hersey P, Zhang XD . Glucose-regulated protein 78 antagonizes cisplatin and adriamycin in human melanoma cells. Carcinogenesis 2009; 30: 197–204.

    Article  CAS  PubMed  Google Scholar 

  12. Rabik CA, Fishel ML, Holleran JL, Kasza K, Kelley MR, Egorin MJ et al. Enhancement of cisplatin [cis-diammine dichloroplatinum (II)] cytotoxicity by O6-benzylguanine involves endoplasmic reticulum stress. J Pharmacol Exp Ther 2008; 327: 442–452.

    Article  CAS  PubMed  Google Scholar 

  13. Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN et al. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharm 2010; 77: 298–310.

    Article  CAS  Google Scholar 

  14. Yu H, Su J, Xu Y, Kang J, Li H, Zhang L et al. p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by clearing ubiquitinated proteins. Eur J Cancer 2011; 47: 1585–1594.

    Article  CAS  PubMed  Google Scholar 

  15. Schroder M, Kaufman RJ . The mammalian unfolded protein response. Annu Rev Biochem 2005; 74: 739–789.

    Article  PubMed  Google Scholar 

  16. Perez-Sala D, Mollinedo F . Inhibition of N-linked glycosylation induces early apoptosis in human promyelocytic HL-60 cells. J Cell Physiol 1995; 163: 523–531.

    Article  CAS  PubMed  Google Scholar 

  17. Ferri KF, Kroemer G . Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3: E255–E263.

    Article  CAS  PubMed  Google Scholar 

  18. Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC . Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 2003; 22: 8608–8618.

    Article  CAS  PubMed  Google Scholar 

  19. Yamaguchi H, Wang HG . CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 2004; 279: 45495–45502.

    Article  CAS  PubMed  Google Scholar 

  20. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 2004; 165: 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boyce M, Yuan J . Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 2006; 13: 363–373.

    Article  CAS  PubMed  Google Scholar 

  22. Ron D, Walter P . Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519–529.

    Article  CAS  PubMed  Google Scholar 

  23. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH . Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 2003; 100: 9946–9951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corazzari M, Lovat PE, Armstrong JL, Fimia GM, Hill DS, Birch-Machin M et al. Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. Br J Cancer 2007; 96: 1062–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pizzo P, Pozzan T . Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 2007; 17: 511–517.

    Article  CAS  PubMed  Google Scholar 

  26. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004; 18: 3066–3077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ . Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21: 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsumoto M, Minami M, Takeda K, Sakao Y, Akira S . Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Lett 1996; 395: 143–147.

    Article  CAS  PubMed  Google Scholar 

  29. Wang XZ, Ron D . Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 1996; 272: 1347–1349.

    Article  CAS  PubMed  Google Scholar 

  30. Harding HP, Zhang Y, Ron D . Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397: 271–274.

    Article  CAS  PubMed  Google Scholar 

  31. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 2007; 129: 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  32. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 2009; 186: 783–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tombal B, Denmeade SR, Isaacs JT . Assessment and validation of a microinjection method for kinetic analysis of [Ca2+]i in individual cells undergoing apoptosis. Cell Calcium 1999; 25: 19–28.

    Article  CAS  PubMed  Google Scholar 

  34. Masuda Y, Aiuchi T, Mihara S, Nakajo S, Nakaya K . Increase in intracellular Ca(2+) concentrations and the corresponding intracellular acidification are early steps for induction of apoptosis by geranylgeraniol in HL60 cells. Biol Pharm Bull 2007; 30: 880–884.

    Article  CAS  PubMed  Google Scholar 

  35. Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE et al. A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 1997; 272: 22800–22808.

    Article  CAS  PubMed  Google Scholar 

  36. Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR . CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 1997; 124: 793–804.

    CAS  PubMed  Google Scholar 

  37. Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S et al. Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 2007; 67: 75–84.

    Article  CAS  PubMed  Google Scholar 

  38. Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M et al. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009; 276: 669–684.

    Article  CAS  PubMed  Google Scholar 

  39. Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K et al. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol 2003; 333: 951–964.

    Article  CAS  PubMed  Google Scholar 

  40. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scurr LL, Guminski AD, Chiew YE, Balleine RL, Sharma R, Lei Y et al. Ankyrin repeat domain 1, ANKRD1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. Clin Cancer Res 2008; 14: 6924–6932.

    Article  CAS  PubMed  Google Scholar 

  42. Bakhshi J, Weinstein L, Poksay K, Nishinaga B, Bredesen D, Rao R . Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin. Apoptosis 2008; 13: 904–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31: 1869–1883.

    Article  CAS  PubMed  Google Scholar 

  44. Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ, Tsang BK . p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res 2003; 63: 7081–7088.

    CAS  PubMed  Google Scholar 

  45. Abedini MR, Muller EJ, Bergeron R, Gray DA, Tsang BK . Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein. Oncogene 2010; 29: 11–25.

    Article  CAS  PubMed  Google Scholar 

  46. Abedini MR, Qiu Q, Yan X, Tsang BK . Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 2004; 23: 6997–7004.

    Article  CAS  PubMed  Google Scholar 

  47. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG et al. Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 2004; 279: 5405–5412.

    Article  CAS  PubMed  Google Scholar 

  48. Fisher DE . Apoptosis in cancer therapy: crossing the threshold. Cell 1994; 78: 539–542.

    Article  CAS  PubMed  Google Scholar 

  49. Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr, Huang P et al. Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 2005; 65: 11658–11666.

    Article  CAS  PubMed  Google Scholar 

  50. Del Bello B, Moretti D, Gamberucci A, Maellaro E . Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 2007; 26: 2717–2726.

    Article  CAS  PubMed  Google Scholar 

  51. Peyrou M, Hanna PE, Cribb AE . Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol Sci 2007; 99: 346–353.

    Article  CAS  PubMed  Google Scholar 

  52. Chu W, Burns DK, Swerlick RA, Presky DH . Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J Biol Chem 1995; 270: 10236–10245.

    Article  CAS  PubMed  Google Scholar 

  53. Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N et al. Carp, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Am J Pathol 2002; 160: 1767–1778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kojic S, Nestorovic A, Rakicevic L, Belgrano A, Stankovic M, Divac A et al. A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein. Arch Biochem Biophys 2010; 502: 60–67.

    Article  CAS  PubMed  Google Scholar 

  55. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 2010; 221: 49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bromati CR, Lellis-Santos C, Yamanaka TS, Nogueira TC, Leonelli M, Caperuto LC et al. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression. Am J Physiol Regul Integr Comp Physiol 2011; 300: R92–R100.

    Article  CAS  PubMed  Google Scholar 

  57. Han XJ, Chae JK, Lee MJ, You KR, Lee BH, Kim DG . Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells. J Biol Chem 2005; 280: 23122–23129.

    Article  CAS  PubMed  Google Scholar 

  58. Lee MJ, Kwak YK, You KR, Lee BH, Kim DG . Involvement of GADD153 and cardiac ankyrin repeat protein in cardiac ischemia-reperfusion injury. Exp Mol Med 2009; 41: 243–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishiguro N, Motoi T, Araki N, Ito H, Moriyama M, Yoshida H . Expression of cardiac ankyrin repeat protein, CARP, in malignant tumors: diagnostic use of CARP protein immunostaining in rhabdomyosarcoma. Hum Pathol 2008; 39: 1673–1679.

    Article  CAS  PubMed  Google Scholar 

  60. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001; 292: 727–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kidd VJ, Lahti JM, Teitz T . Proteolytic regulation of apoptosis. Semin Cell Dev Biol 2000; 11: 191–201.

    Article  CAS  PubMed  Google Scholar 

  62. Srivastava RK, Sollott SJ, Khan L, Hansford R, Lakatta EG, Longo DL . Bcl-2 and Bcl-X(L) block thapsigargin-induced nitric oxide generation, c-Jun NH(2)-terminal kinase activity, and apoptosis. Mol Cell Biol 1999; 19: 5659–5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu W, Cowie A, Wasfy GW, Penn LZ, Leber B, Andrews DW . Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 1996; 15: 4130–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rudner J, Jendrossek V, Belka C . New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis 2002; 7: 441–447.

    Article  CAS  PubMed  Google Scholar 

  65. Endresen PC, Prytz PS, Aarbakke J . A new flow cytometric method for discrimination of apoptotic cells and detection of their cell cycle specificity through staining of F-actin and DNA. Cytometry 1995; 20: 162–171.

    Article  CAS  PubMed  Google Scholar 

  66. Adachi T, Tsubata T . FRET-based Ca2+ measurement in B lymphocyte by flow cytometry and confocal microscopy. Biochem Biophys Res Commun 2008; 367: 377–382.

    Article  CAS  PubMed  Google Scholar 

  67. Lei Y, Birch D, Davey M, Ellis JT . Subcellular fractionation and molecular characterization of the pellicle and plasmalemma of Neospora caninum. Parasitology 2005; 131: 467–475.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Cancer Council New South Wales, Australia and Cancer Australia (Project 632595). Special thanks to Dr Maggie Wang, Westmead Millennium Institute Flow Cytometry Facility, for her help with analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A deFazio.

Ethics declarations

Competing interests

Paul Harnett and Anna deFazio jointly hold a patent related to ANKRD1 but have received no financial benefit. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, Y., Henderson, B., Emmanuel, C. et al. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene 34, 485–495 (2015). https://doi.org/10.1038/onc.2013.566

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.566

Keywords

This article is cited by

Search

Quick links