Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells

Abstract

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the rearranged during transfection (RET) proto-oncogene. For therapy of advanced MTC, the Food and Drug Administration recently approved vandetanib and cabozantinib, the tyrosine kinase inhibitors targeting RET, vascular endothelial growth factor receptor, epidermal growth factor receptor and/or c-MET. Nevertheless, not all patients respond to these drugs, demanding additional therapeutic strategies. We found that mortalin (HSPA9/GRP75), a member of HSP70 family, is upregulated in human MTC tissues and that its depletion robustly induces cell death and growth arrest in MTC cell lines in culture and in mouse xenografts. These effects were accompanied by substantial downregulation of RET, induction of the tumor-suppressor TP53 and altered expression of cell cycle regulatory machinery and apoptosis markers, including E2F-1, p21CIP1, p27KIP1 and Bcl-2 family proteins. Our investigation of the molecular mechanisms underlying these effects revealed that mortalin depletion induces transient MEK/ERK (extracellular signal–regulated kinase) activation and altered mitochondrial bioenergetics in MTC cells, as indicated by depolarized mitochondrial membrane, decreased oxygen consumption and extracellular acidification and increased oxidative stress. Intriguingly, mortalin depletion induced growth arrest partly via the MEK/ERK pathway, whereas it induced cell death by causing mitochondrial dysfunction in a Bcl-2-dependent manner. However, TP53 was not necessary for these effects except for p21CIP1 induction. Moreover, mortalin depletion downregulated RET expression independently of MEK/ERK and TP53. These data demonstrate that mortalin is a key regulator of multiple signaling and metabolic pathways pivotal to MTC cell survival and proliferation, proposing mortalin as a novel therapeutic target for MTC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tuttle RM, Ball DW, Byrd D, Daniels GH, Dilawari RA, Doherty GM et al. Medullary carcinoma. J Natl Compr Canc Netw 2010; 8: 512–530.

    Article  CAS  PubMed  Google Scholar 

  2. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab 2013; 98: E364–E369.

    Article  CAS  PubMed  Google Scholar 

  3. Boichard A, Croux L, Al Ghuzlan A, Broutin S, Dupuy C, Leboulleux S et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab 2012; 97: E2031–E2035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S et al. Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid 2013; 1: 1–8.

    Google Scholar 

  5. Degrauwe N, Sosa JA, Roman S, Deshpande HA . Vandetanib for the treatment of metastatic medullary thyroid cancer. Clin Med Insights Oncol 2012; 6: 243–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nagilla M, Brown RL, Cohen EE . Cabozantinib for the treatment of advanced medullary thyroid cancer. Adv Ther 2012; 29: 925–934.

    Article  CAS  PubMed  Google Scholar 

  7. Wells SA Jr., Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134–141.

    Article  CAS  PubMed  Google Scholar 

  8. Daugaard M, Rohde M, Jaattela M . The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007; 581: 3702–3710.

    Article  CAS  PubMed  Google Scholar 

  9. Deocaris CC, Widodo N, Ishii T, Kaul SC, Wadhwa R . Functional significance of minor structural and expression changes in stress chaperone mortalin. Ann NY Acad Sci 2007; 1119: 165–175.

    Article  CAS  PubMed  Google Scholar 

  10. Kaul SC, Deocaris CC, Wadhwa R . Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2007; 42: 263–274.

    Article  CAS  PubMed  Google Scholar 

  11. Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR et al. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118: 2973–2980.

    Article  CAS  PubMed  Google Scholar 

  12. Wu PK, Hong SK, Veeranki S, Karkhanis M, Starenki D, Plaza JA et al. A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol 2013; 33: 4051–4067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leustek T, Dalie B, Amir-Shapira D, Brot N, Weissbach H . A member of the Hsp70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proc Natl Acad Sci USA 1989; 86: 7805–7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dundas SR, Lawrie LC, Rooney PH, Murray GI . Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 2005; 205: 74–81.

    Article  CAS  PubMed  Google Scholar 

  15. Wadhwa R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR et al. Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem 1998; 273: 29586–29591.

    Article  CAS  PubMed  Google Scholar 

  16. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R et al. Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 2011; 18: 1046–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R . Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 2005; 280: 39373–39379.

    Article  CAS  PubMed  Google Scholar 

  18. Iosefson O, Azem A . Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins–identification of additional interacting regions. FEBS Lett 2010; 584: 1080–1084.

    Article  CAS  PubMed  Google Scholar 

  19. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R et al. Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. Int J Cancer 2011; 129: 1806–1814.

    Article  CAS  PubMed  Google Scholar 

  20. Wadhwa R, Yaguchi T, Hasan MK, Taira K, Kaul SC . Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun 2003; 302: 735–742.

    Article  CAS  PubMed  Google Scholar 

  21. Ichihara M, Murakumo Y, Takahashi M . RET and neuroendocrine tumors. Cancer Lett 2004; 204: 197–211.

    Article  CAS  PubMed  Google Scholar 

  22. Park JI, Strock CJ, Ball DW, Nelkin BD . The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol 2003; 23: 543–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Park JI, Strock CJ, Ball DW, Nelkin BD . Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine 2005; 29: 125–134.

    Article  CAS  PubMed  Google Scholar 

  24. Arthan D, Hong SK, Park JI . Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett 2010; 297: 31–41.

    Article  CAS  PubMed  Google Scholar 

  25. Sosonkina N, Starenki D, Park JI . The role of STAT3 in thyroid cancer. Cancers (Basel) 2014; 6: 526–544.

    Article  Google Scholar 

  26. Park JI . Growth arrest signaling of the Raf/MEK/ERK pathway in cancer. Front Biol (Beijing) 2014; 9: 95–103.

    Article  CAS  Google Scholar 

  27. Sarosiek KA, Ni Chonghaile T, Letai A . Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol 2013; 23: 612–619.

    Article  CAS  PubMed  Google Scholar 

  28. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107: 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007; 9: 49–89.

    Article  CAS  PubMed  Google Scholar 

  30. Starenki D, Park JI . Mitochondria-targeted nitroxide, Mito-CP, suppresses medullary thyroid carcinoma cell survival in vitro and in vivo. J Clin Endocrinol Metab 2013; 98: 1529–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mooi WJ, Peeper DS . Oncogene-induced cell senescence–halting on the road to cancer. N Engl J Med 2006; 355: 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  32. Ward PS, Thompson CB . Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khalil AA, Kabapy NF, Deraz SF, Smith C . Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta 2011; 1816: 89–104.

    CAS  PubMed  Google Scholar 

  34. Kampinga HH, Craig EA . The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010; 11: 579–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bukau B, Horwich AL . The Hsp70 and Hsp60 chaperone machines. Cell 1998; 92: 351–366.

    Article  CAS  PubMed  Google Scholar 

  36. Schneider HC, Berthold J, Bauer MF, Dietmeier K, Guiard B, Brunner M et al. Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 1994; 371: 768–774.

    Article  CAS  PubMed  Google Scholar 

  37. Merrick BA, Walker VR, He C, Patterson RM, Selkirk JK . Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett 1997; 119: 185–190.

    Article  CAS  PubMed  Google Scholar 

  38. Starenki D, Singh NK, Jensen DR, Peterson FC, Park JI . Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett 2013; 339: 144–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong SK, Yoon S, Moelling C, Arthan D, Park JI . Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem 2009; 284: 33006–33018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr., Joseph J et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 2012; 72: 2634–2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sosonkina N, Nakashima M, Ohta T, Niikawa N, Starenki D . Down-regulation of ABCC11 protein (MRP8) in human breast cancer. Exp Oncol 2011; 33: 42–46.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Sergey Tarima at the Division of Biostatistics, Medical College of Wisconsin (MCW) for statistical analysis; Dr Alexandra F Lerch-Gaggl (Pediatric BioBank and Analytical Tissue Core, MCW) for imaging immunohistochemistry data; and the MCW Cancer Center Bioenergetics shared resource and Advancing Healthier Wisconsin for Seahorse analysis. This work was supported by the American Cancer Society (RSGM-10-189-01-TBE) and the National Cancer Institute (R01CA138441) to J-IP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-I Park.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starenki, D., Hong, SK., Lloyd, R. et al. Mortalin (GRP75/HSPA9) upregulation promotes survival and proliferation of medullary thyroid carcinoma cells. Oncogene 34, 4624–4634 (2015). https://doi.org/10.1038/onc.2014.392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.392

This article is cited by

Search

Quick links