Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG

Subjects

Abstract

IMP3 (insulin-like growth factor-2 mRNA binding protein 3) is an oncofetal protein whose expression is prognostic for poor outcome in several cancers. Although IMP3 is expressed preferentially in triple-negative breast cancer (TNBC), its function is poorly understood. We observed that IMP3 expression is significantly higher in tumor initiating than in non-tumor initiating breast cancer cells and we demonstrate that IMP3 contributes to self-renewal and tumor initiation, properties associated with cancer stem cells (CSCs). The mechanism by which IMP3 contributes to this phenotype involves its ability to induce the stem cell factor SOX2. IMP3 does not interact with SOX2 mRNA significantly or regulate SOX2 expression directly. We discovered that IMP3 binds avidly to SNAI2 (SLUG) mRNA and regulates its expression by binding to the 5' UTR. This finding is significant because SLUG has been implicated in breast CSCs and TNBC. Moreover, we show that SOX2 is a transcriptional target of SLUG. These data establish a novel mechanism of breast tumor initiation involving IMP3 and they provide a rationale for its association with aggressive disease and poor outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    Article  CAS  PubMed  Google Scholar 

  3. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC . A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 1999; 19: 1262–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL, Khan A . IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol 2009; 40: 1528–1533.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 2006; 7: 556–564.

    Article  CAS  PubMed  Google Scholar 

  7. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007; 356: 217–226.

    Article  CAS  PubMed  Google Scholar 

  8. Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tam WL, Lu H, Buikhuisen J, Soh BS, Lim E, Reinhardt F et al. Protein kinase C alpha is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell 2013; 24: 347–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iliopoulos D, Hirsch HA, Wang G, Struhl K . Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 2011; 108: 1397–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goel HL, Gritsko T, Pursell B, Chang C, Shultz LD, Greiner DL et al. Regulated splicing of the alpha6 integrin cytoplasmic domain determines the fate of breast cancer stem cells. Cell Rep 2014; 7: 747–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Rodriguez-Gil Y, Martinez MA, Hernandez L et al. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Mod Pathol 2007; 20: 474–481.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008; 283: 17969–17978.

    Article  CAS  PubMed  Google Scholar 

  15. Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN et al. CD44(+)/CD24(-/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 2012; 43: 364–373.

    Article  CAS  PubMed  Google Scholar 

  16. Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 2010; 6: 279–286.

    Article  CAS  PubMed  Google Scholar 

  17. Tada Y, Yamaguchi Y, Kinjo T, Song X, Akagi T, Takamura H et al. The stem cell transcription factor ZFP57 induces IGF2 expression to promote anchorage-independent growth in cancer cells. Oncogene 2015; 34: 752–760.

    Article  CAS  PubMed  Google Scholar 

  18. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121: 2750–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 2008; 214: 25–37.

    Article  CAS  PubMed  Google Scholar 

  20. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao X, Sun B, Sun D, Liu T, Che N, Gu Q et al. Slug promotes hepatocellular cancer cell progression by increasing sox2 and nanog expression. Oncol Rep 2015; 33: 149–156.

    Article  CAS  PubMed  Google Scholar 

  22. Su P, Hu J, Zhang H, Li W, Jia M, Zhang X et al. IMP3 expression is associated with epithelial-mesenchymal transition in breast cancer. Int J Clin Exp Pathol 2014; 7: 3008–3017.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  26. Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102: 1637–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 2007; 25: 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  28. Hajra KM, Chen DY, Fearon ER . The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  29. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A . The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116: 499–511.

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhary J, Skinner MK . Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 1999; 13: 774–786.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S et al. Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep 2014; 2: 633–647.

    Article  CAS  Google Scholar 

  33. Jonson L, Christiansen J, Hansen TV, Vikesa J, Yamamoto Y, Nielsen FC, IMP3 RNP . safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development. Cell Rep 2014; 7: 539–551.

    Article  PubMed  Google Scholar 

  34. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511: 246–250.

    Article  CAS  PubMed  Google Scholar 

  35. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31: 1354–1365.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2014; e-pub ahead of print 25 August 2014; doi:10.1038/onc.2014.257.

    Article  PubMed  Google Scholar 

  37. Siegle JM, Basin A, Sastre-Perona A, Yonekubo Y, Brown J, Sennett R et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun 2014; 5: 4511.

    Article  CAS  PubMed  Google Scholar 

  38. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 2012; 31: 2270–2282.

    Article  CAS  PubMed  Google Scholar 

  39. Rybak AP, Tang D . SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Cell Signal 2013; 25: 2734–2742.

    Article  CAS  PubMed  Google Scholar 

  40. Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 2012; 11: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Samanta S, Sharma VM, Khan A, Mercurio AM . Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 2012; 31: 4689–4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  43. Samanta S, Pursell B, Mercurio AM . IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem 2013; 288: 12569–12573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen CL, Tsukamoto H, Liu JC, Kashiwabara C, Feldman D, Sher L et al. Reciprocal regulation by TLR4 and TGF-beta in tumor-initiating stem-like cells. J Clin Invest 2013; 123: 2832–2849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, Sanders M et al. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest 2013; 123: 1348–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kono K, Iinuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y et al. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med 2012; 10: 141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Janiszewska M, Suva ML, Riggi N, Houtkooper RH, Auwerx J, Clement-Schatlo V et al. Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev 2012; 26: 1926–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci USA 2010; 107: 21737–21742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K et al. GLI1 regulates a novel neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med 2013; 5: 488–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mak P, Leung YK, Tang WY, Harwood C, Ho SM . Apigenin suppresses cancer cell growth through ERbeta. Neoplasia 2006; 8: 896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Chung-Cheng Hsieh (University of Massachusetts Medical School) for statistical analysis of our in vivo data. This work was supported by the Megan Lally Memorial Fund and NIH Grants CA168464, CA034196 and AI46629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Mercurio.

Ethics declarations

Competing interests

DLG and LDS are consultants for Viacord, Inc. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Sun, H., Goel, H. et al. IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene 35, 1111–1121 (2016). https://doi.org/10.1038/onc.2015.164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.164

This article is cited by

Search

Quick links