Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt/β-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression

Abstract

The chromatin organizer SATB1 has been implicated in the development and progression of multiple cancers including breast and colorectal cancers. However, the regulation and role of SATB1 in colorectal cancers is poorly understood. Here, we demonstrate that expression of SATB1 is induced upon hyperactivation of Wnt/β-catenin signaling and repressed upon depletion of TCF7L2 (TCF4) and β-catenin. Using several colorectal cancer cell line models and the APC min mutant zebrafish in vivo model, we established that SATB1 is a novel target of Wnt/β-catenin signaling. We show that direct binding of TCF7L2/β-catenin complex on Satb1 promoter is required for the regulation of SATB1. Moreover, SATB1 is sufficient to regulate the expression of β-catenin, members of TCF family, multiple downstream effectors and mediators of Wnt pathway. SATB1 potentiates the cellular changes and expression of key cancer-associated genes in non-aggressive colorectal cells, promotes their aggressive phenotype and tumorigenesis in vivo. Conversely, depletion of SATB1 from aggressive cells reprograms the expression of cancer-associated genes, reverses their cancer phenotype and reduces the potential of these cells to develop tumors in vivo. We also show that SATB1 and β-catenin bind to the promoters of TCF7L2 and the downstream targets of Wnt signaling and regulate their expression. Our findings suggest that SATB1 shares a feedback regulatory network with TCF7L2/β-catenin signaling and is required for Wnt signaling-dependent regulation of β-catenin. Collectively, these results provide unequivocal evidence to establish that SATB1 reprograms the expression of tumor growth- and metastasis-associated genes to promote tumorigenesis and functionally overlaps with Wnt signaling critical for colorectal cancer tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clevers H . Wnt/β-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  3. Najdi R, Holcombe RF, Waterman ML . Wnt signaling and colon carcinogenesis: beyond APC. J. Carcinog 2011; 10: 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valenta T, Hausmann G, Basler K . The many faces and functions of β-catenin. EMBO J 2012; 31: 2714–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Galande S . Chromatin (dis)organization and cancer: BUR-binding proteins as biomarkers for cancer. Curr Cancer Drug Targets 2002; 2: 157–190.

    Article  CAS  PubMed  Google Scholar 

  6. Kohwi-Shigematsu T, Poterlowicz K, Ordinario E, Han H-J, Botchkarev V, Kohwi Y . Genome organizing function of SATB1 in tumor progression. Semin Cancer Biol 2013; 23: 72–79.

    Article  CAS  PubMed  Google Scholar 

  7. Mir R, Pradhan SJ, Galande S . Chromatin organizer SATB1 as a novel molecular target for cancer therapy. Curr Drug Targets 2012; 13: 1603–1615.

    Article  CAS  PubMed  Google Scholar 

  8. Han H, Russo J, Kohwi Y, Kohwi-shigematsu T . SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 2008; 452: 187–192.

    Article  CAS  PubMed  Google Scholar 

  9. Tu W, Luo M, Wang Z, Yan W, Xia Y, Deng H et al. Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer. Liver Int 2012; 32: 1064–1078.

    Article  CAS  PubMed  Google Scholar 

  10. Xiang J, Zhou L, Li S, Xi X, Zhang J, Wang Y et al. AT-rich sequence binding protein 1: contribution to tumor progression and metastasis of human ovarian carcinoma. Oncol Lett 2012; 3: 865–870.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chu S-H, Ma Y-B, Feng D-F, Zhang H, Zhu Z-A, Li Z-Q et al. Upregulation of SATB1 is associated with the development and progression of glioma. J Transl Med 2012; 10: 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu X, Cheng C, Zhu S, Yang YUN, Zheng L, Wang G et al. SATB1 is an independent prognostic marker for gastric cancer in a Chinese population. Oncol Rep 2010; 24: 981–987.

    CAS  PubMed  Google Scholar 

  13. Cheng C, Lu X, Wang G, Zheng L, Shu X . Expression of SATB1 and heparanase in gastric cancer and its relationship to clinicopathologic features. APMIS 2010; 118: 855–863.

    Article  CAS  PubMed  Google Scholar 

  14. Meng WJ, Yan H, Zhou B, Zhang W, Kong XH, Wang R et al. Correlation of SATB1 overexpression with the progression of human rectal cancer. Int J Colorectal Dis 2012; 27: 143–150.

    Article  PubMed  Google Scholar 

  15. Nodin B, Johannesson H, Wangefjord S, O'Connor DP, Ericson-Lindquist K, Uhlén M et al. Molecular correlates and prognostic significance of SATB1 expression in colorectal cancer. Diagn. Pathol 2012; 7: 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Tian X, Ji H, Guan X, Xu W, Dong B et al. Expression of SATB1 promotes the growth and metastasis of colorectal cancer. PLoS One 2014; 9: e100413.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Frömberg A, Rabe M, Aigner A . Multiple effects of the special AT-rich binding protein 1 (SATB1) in colon carcinoma. Int J Cancer 2014; 135: 2537–2546.

    Article  PubMed  Google Scholar 

  18. Meng W-J, Yan H, Li Y, Zhou Z-G . SATB1 and colorectal cancer in Wnt/β-catenin signaling: is there a functional link? Med Hypotheses 2011; 76: 277–279.

    Article  CAS  PubMed  Google Scholar 

  19. Mcinnes N, Sadlon TJ, Brown CY, Pederson S, Beyer M, Schultze JL et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene 2011; 31: 1045–1054.

    Article  PubMed  Google Scholar 

  20. Leibovitz A, Stinson JC, Iii WBM, Leibovltz A, Stlnson JC, Mccombs WB et al. Classification of human colorectal adenocarcinoma cell lines classification of human colorectal adenocarcinoma cell lines. Cancer Res 1976; 36: 4562–4569.

    CAS  PubMed  Google Scholar 

  21. Thorne CA, Hanson AJ, Schneider J, Tahinci E, Orton D, Cselenyi CS et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol 2010; 6: 829–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao F, Xuan Z, Liu L, Zhang MQ . TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Res 2005; 33: D103–D107.

    Article  CAS  PubMed  Google Scholar 

  23. Van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 1997; 88: 789–799.

    Article  CAS  PubMed  Google Scholar 

  24. Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ . Canonical Wnt/β-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells. 2010; 28: 1794–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Frietze S, Wang R, Yao L, Tak YG, Ye Z, Gaddis M et al. Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3. Genome Biol 2012; 13: R52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macdonald BT, Tamai K, He X . Wnt/beta catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bienz M, Clevers H . Linking colorectal cancer to Wnt signaling review. Cell 2000; 103: 311–320.

    Article  CAS  PubMed  Google Scholar 

  28. Notani D, Gottimukkala KP, Jayani RS, Limaye AS, Damle MV, Mehta S et al. Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biol 2010; 8: e1000296.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Notani D, Ramanujam PL, Kumar PP, Gottimukkala KP, Kumar-Sinha C, Galande S . N-terminal PDZ-like domain of chromatin organizer SATB1 contributes towards its function as transcription regulator. J Biosci 2011; 36: 461–469.

    Article  CAS  PubMed  Google Scholar 

  30. Nodin B, Johannesson H, Wangefjord S, O’Connor DP, Lindquist KE, Uhlén M et al. Molecular correlates and prognostic significance of SATB1 expression in colorectal cancer. Diagn Pathol 2012; 7: 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Zhang B, Zhang X, Sun Y, Wei X, McNutt MA et al. SATB1 expression is associated with biologic behavior in colorectal carcinoma in vitro and in vivo. PLoS One 2013; 8: e47902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. González-Sancho JM, Aguilera O, García JM, Pendás-Franco N, Peña C, Cal S et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene 2005; 24: 1098–1103.

    Article  PubMed  Google Scholar 

  33. Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006; 25: 4116–4121.

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Zhou J, Wang X, Hao J, Chen J, Zhang X et al. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J Pathol 2009; 219: 114–122.

    Article  CAS  PubMed  Google Scholar 

  35. Galande S, Purbey PK, Notani D, Kumar PP . The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr Opin Genet Dev 2007; 17: 408–414.

    Article  CAS  PubMed  Google Scholar 

  36. Cai S, Lee CC, Kohwi-Shigematsu T . SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 2006; 38: 1278–1288.

    Article  CAS  PubMed  Google Scholar 

  37. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S et al. Role of TAZ as mediator of Wnt signaling. Cell 2012; 151: 1443–1456.

    Article  CAS  PubMed  Google Scholar 

  38. Ordinario E, Han H-J, Furuta S, Heiser LM, Jakkula LR, Rodier F et al. ATM suppresses SATB1-induced malignant progression in breast epithelial cells. PLoS One 2012; 7: e51786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H, Tora L . H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics 2012; 13: 424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Duan CJ, Binkley C, Li G, Uhler MD, Logsdon CD et al. A transforming growth factor-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol 2004; 24: 2169–2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liang C-C, Park AY, Guan J-L . In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2: 329–333.

    Article  CAS  PubMed  Google Scholar 

  42. Franken NaP, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the experimental animal facility and in vivo imaging facility of NCCS. Work was supported by grants from the Centre of Excellence in Epigenetics program of the Department of Biotechnology and the Swarnajayanti Fellowship from the Department of Science and Technology, Government of India to SG. RM is supported by fellowship from the University Grants Commission, India. We thank Mahendra Sonawane for providing RNA and whole cell lysates from APC min mutant Zebrafish.

Author contributions

R Mir and SG conceived project and designed experiments. Experiments are performed by R Mir and SP. Tissue resources are provided by PP and RM. Manuscript is written by R Mir and SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Galande.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, R., Pradhan, S., Patil, P. et al. Wnt/β-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression. Oncogene 35, 1679–1691 (2016). https://doi.org/10.1038/onc.2015.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.232

This article is cited by

Search

Quick links