Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ambient temperature variability and blood pressure in a prospective cohort of 50,000 Chinese adults

Abstract

Blood pressure has been shown to change by outdoor temperature, but whether intra- and inter-day temperature variability (TV) will bring higher effect on BP is not clear. Based on a prospective cohort study, the mixed effect model was selected to estimate the relationship between TV (daily temperature variability (DTV) and hourly temperature variability (HTV)) and BP (systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and mean arterial pressure (MAP)) after adjusting for confounding variables. We found that there was a positive linear correlation between TV and BP. The results of DTV and HTV were basically consistent, but the effect estimates of HTV seemed to be larger. Gender, age, BMI, education level and BP status may modify the relationship between TV and BP. The effect of TV on BP was greater in non-heating season than in heating season. Our work contributes to a further macro mechanism evidence for the TV-CVDs association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exposure-relationship between TV and BP.
Fig. 2: BP changes associated with per 1 °C increase in DTV and HTV in different lag days.
Fig. 3: Estimated effects in BP per 1 °C increase in TV among people with different blood pressure.

Similar content being viewed by others

Data availability

The data that support the findings in this research are available from the corresponding author ShanZheng upon reasonable request.

References

  1. Cao J, Cheng Y, Zhao N, Song W, Jiang C, Chen R, et al. Diurnal temperature range is a risk factor for coronary heart disease death. J Epidemiol 2009;19:328–32. https://doi.org/10.2188/jea.je20080074. PubMed PMID: 19749499; PubMed Central PMCID: PMCPMC3924102

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tian Y, Liu H, Si Y, Cao Y, Song J, Li M, et al. Association between temperature variability and daily hospital admissions for cause-specific cardiovascular disease in urban China: A national time-series study. PLoS Med. 2019;16:e1002738. https://doi.org/10.1371/journal.pmed.1002738. PubMed PMID: 30689640; PubMed Central PMCID: PMCPMC6349307

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhan Z, Zhao Y, Pang S, Zhong X, Wu C, Ding Z. Temperature change between neighboring days and mortality in United States: A nationwide study. Sci Total Environ. 2017;584:1152–61. https://doi.org/10.1016/j.scitotenv.2017.01.177. PubMed PMID: WOS:000399358500114

    Article  CAS  PubMed  Google Scholar 

  4. Cohn JN, Duprez DA, Hoke L, Florea N, Duval S. Office Blood Pressure and Cardiovascular Disease: Pathophysiologic Implications for Diagnosis and Treatment (vol 69, pg e14, 2017). Hypertension. 2018;72:E31. https://doi.org/10.1161/HYP.0000000000000073. PubMed PMID: WOS:000441024000003

    Article  CAS  Google Scholar 

  5. Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertension. 2020;75:285–92. https://doi.org/10.1161/hypertensionaha.119.14240. PubMed PMID: WOS:000509541800004

    Article  CAS  PubMed  Google Scholar 

  6. Wu S, Song Y, Chen S, Zheng M, Ma Y, Cui L, et al. Blood Pressure Classification of 2017 Associated With Cardiovascular Disease and Mortality in Young Chinese Adults. Hypertension. 2020;76:251–8. https://doi.org/10.1161/hypertensionaha.119.14239. PubMed PMID: WOS:000545974600038

    Article  CAS  PubMed  Google Scholar 

  7. Choi YJ, Kim SH, Kang SH, Yoon CH, Lee HY, Youn TJ, et al. Reconsidering the cut-off diastolic blood pressure for predicting cardiovascular events: a nationwide population-based study from Korea. Eur Heart J. 2019;40:724–31. https://doi.org/10.1093/eurheartj/ehy801. PubMed PMID: WOS:000461137600009

  8. Zheng S, Zhu W, Wang M, Shi Q, Luo Y, Miao Q, et al. The effect of diurnal temperature range on blood pressure among 46,609 people in Northwestern China. Science of the Total Environment. 2020;730. https://doi.org/10.1016/j.scitotenv.2020.138987. PubMed PMID: WOS:000537446400009.

  9. Lim Y-H, Kim H, Kim JH, Bae S, Hong Y-C. Effect of diurnal temperature range on cardiovascular markers in the elderly in Seoul, Korea. Int J Biometeorol. 2013;57:597–603. https://doi.org/10.1007/s00484-012-0587-x. PubMed PMID: WOS:000320328600010

    Article  PubMed  Google Scholar 

  10. Masajtis-Zagajewska A, Pawlowicz E, Nowicki M. Effect of Short-Term Cold Exposure on Central Aortic Blood Pressure in Patients with CKD. Nephron. 2021;145:20–6. https://doi.org/10.1159/000510365. PubMed PMID: MEDLINE:33053559

    Article  PubMed  Google Scholar 

  11. Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, et al. Temperature Variability and Mortality: A Multi-Country Study. Environ Health Perspect. 2016;124:1554–9. https://doi.org/10.1289/EHP149. PubMed PMID: 27258598; PubMed Central PMCID: PMCPMC5047764 interests

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cheng J, Xu Z, Bambrick H, Su H, Tong S, Hu W. The mortality burden of hourly temperature variability in five capital cities, Australia: Time-series and meta-regression analysis. Environ Int. 2017;109:10–9. https://doi.org/10.1016/j.envint.2017.09.012. PubMed PMID: 28923460

    Article  PubMed  Google Scholar 

  13. Zhang Y, Xiang Q, Yu C, Bao J, Ho HC, Sun S, et al. Mortality risk and burden associated with temperature variability in China, United Kingdom and United States: Comparative analysis of daily and hourly exposure metrics. Environ Res. 2019;179:108771. https://doi.org/10.1016/j.envres.2019.108771. PubMed PMID: 31574448

    Article  CAS  PubMed  Google Scholar 

  14. Hu K, Guo Y, Yang X, Zhong J, Fei F, Chen F, et al. Temperature variability and mortality in rural and urban areas in Zhejiang province, China: An application of a spatiotemporal index. Sci Total Environ. 2019;647:1044–51. https://doi.org/10.1016/j.scitotenv.2018.08.095. PubMed PMID: 30180312

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Q, Li S, Coelho M, Saldiva PHN, Hu K, Huxley RR, et al. Temperature variability and hospitalization for ischaemic heart disease in Brazil: A nationwide case-crossover study during 2000-2015. Sci Total Environ. 2019;664:707–12. https://doi.org/10.1016/j.scitotenv.2019.02.066. PubMed PMID: 30763851

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Q, Coelho M, Li S, Saldiva PHN, Hu K, Abramson MJ, et al. Temperature variability and hospitalization for cardiac arrhythmia in Brazil: A nationwide case-crossover study during 2000-2015. Environ Pollut. 2019;246:552–8. https://doi.org/10.1016/j.envpol.2018.12.063. PubMed PMID: 30594895

    Article  CAS  PubMed  Google Scholar 

  17. Ma C, Yang J, Nakayama SF, Honda Y. The association between temperature variability and cause-specific mortality: Evidence from 47 Japanese prefectures during 1972-2015. Environ Int. 2019;127:125–33. https://doi.org/10.1016/j.envint.2019.03.025. PubMed PMID: 30913457

    Article  PubMed  Google Scholar 

  18. Bai Y, Yang A, Pu H, Dai M, Cheng N, Ding J, et al. Cohort Profile: The China Metal-Exposed Workers Cohort Study (Jinchang Cohort). Int J Epidemiol. 2017;46:1095 https://doi.org/10.1093/ije/dyw223. PubMed PMID: WOS:000411078800006

    Article  PubMed  Google Scholar 

  19. JMPs. G Jinchang overview. http://www.jcsgovcn/col/col22/indexhtml. 2019.

  20. Raudenbush SW. Linear mixed models for longitudinal data. Sociological Methods Res. 2002;31:110–8. PubMed PMID: WOS:000176786300006

    Google Scholar 

  21. Wu S, Yang D, Pan L, Shan J, Li H, Wei H, et al. Ambient temperature and cardiovascular biomarkers in a repeated-measure study in healthy adults: A novel biomarker index approach. Environ Res. 2017;156:231–8. https://doi.org/10.1016/j.envres.2017.02.036. PubMed PMID: 28359041

    Article  CAS  PubMed  Google Scholar 

  22. Halonen JI, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Outdoor temperature is associated with serum HDL and LDL. Environ Res 2011;111:281–7. https://doi.org/10.1016/j.envres.2010.12.001. PubMed PMID: 21172696; PubMed Central PMCID: PMCPMC4437587

    Article  CAS  PubMed  Google Scholar 

  23. Altman DG, Bland JM. Statistics Notes - Interaction revisited: the difference between two estimates. Bmj-Br Med J. 2003;326:219. https://doi.org/10.1136/bmj.326.7382.219. PubMed PMID: WOS:000180689600027

    Article  Google Scholar 

  24. Zeka A, Zanobetti A, Schwartz J. Individual-level modifiers of the effects of particulate matter on daily mortality. Am J Epidemiol. 2006;163:849–59. https://doi.org/10.1093/aje/kwj116. PubMed PMID: WOS:000237174600007

    Article  PubMed  Google Scholar 

  25. Hoffmann B, Luttmann-Gibson H, Cohen A, Zanobetti A, de Souza C, Foley C, et al. Opposing Effects of Particle Pollution, Ozone, and Ambient Temperature on Arterial Blood Pressure. Environ Health Perspect. 2012;120:241–6. https://doi.org/10.1289/ehp.1103647. PubMed PMID: WOS:000299915400028

    Article  CAS  PubMed  Google Scholar 

  26. Luo K, Li R, Wang Z, Zhang R, Xu Q. Effect modification of the association between temperature variability and daily cardiovascular mortality by air pollutants in three Chinese cities. Environ Pollut. 2017;230:989–99. https://doi.org/10.1016/j.envpol.2017.07.045. PubMed PMID: 28763936

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Yu C, Bao J, Li X. Impact of temperature variation on mortality: An observational study from 12 counties across Hubei Province in China. Sci Total Environ. 2017;587-588:196–203. https://doi.org/10.1016/j.scitotenv.2017.02.117. PubMed PMID: 28238433

    Article  CAS  PubMed  Google Scholar 

  28. Wan EYF, Fung WT, Schooling CM, Au Yeung SL, Kwok MK, Yu EYT, et al. Blood Pressure and Risk of Cardiovascular Disease in UK Biobank: A Mendelian Randomization Study. Hypertension. 2021;77:367–75. https://doi.org/10.1161/hypertensionaha.120.16138. PubMed PMID: MEDLINE:33390054

  29. Schram MT, Kostense PJ, van Dijk R, Dekker JM, Nijpels G, Bouter LM, et al. Diabetes, pulse pressure and cardiovascular mortality: the Hoorn Study. J Hypertension. 2002;20:1743–51. https://doi.org/10.1097/00004872-200209000-00017. PubMed PMID: WOS:000178314900017

    Article  CAS  Google Scholar 

  30. Liu F-D, Shen X-L, Zhao R, Tao X-X, Wang S, Zhou J-J, et al. Pulse pressure as an independent predictor of stroke: a systematic review and a meta-analysis. Clin Res Cardiol. 2016;105:677–86. https://doi.org/10.1007/s00392-016-0972-2. PubMed PMID: WOS:000380136500005

    Article  CAS  PubMed  Google Scholar 

  31. Philippe F, Chemaly E, Blacher J, Mourad JJ, Dibie A, Larrazet F, et al. Aortic pulse pressure and extent of coronary artery disease in percutaneous transluminal coronary angioplasty candidates. Am J Hypertension. 2002;15:672–7. https://doi.org/10.1016/s0895-7061(02)02961-8. PubMed PMID: WOS:000177123300002

    Article  Google Scholar 

  32. Miura K, Soyama Y, Morikawa Y, Nishijo M, Nakanishi Y, Naruse Y, et al. Comparison of four blood pressure indexes for the prediction of 10-year stroke risk in middle-aged and older Asians. Hypertension. 2004;44:715–20. https://doi.org/10.1161/01.HYP.0000145108.23948.7b. PubMed PMID: WOS:000224761500024

    Article  CAS  PubMed  Google Scholar 

  33. Fuhrer H, Weiller C, Niesen WD. Is mean arterial pressure the best parameter in ischemic stroke? Clin Case Rep. 2016;4:236–9. https://doi.org/10.1002/ccr3.491. PubMed PMID: 27014441

  34. Yamamoto S, Iwamoto M, Inoue M, Harada N. Evaluation of the Effect of Heat Exposure on the Autonomic Nervous System by Heart Rate Variability and Urinary Catecholamines. J Occup Health. 2007;49:199–204. https://doi.org/10.1539/joh.49.199. PubMed PMID: 17575400

  35. Nguyen JL, Laden F, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW. Weather and triggering of ventricular arrhythmias in patients with implantable cardioverter-defibrillators. J Exposure Sci Environ Epidemiol. 2015;25:175–81. https://doi.org/10.1038/jes.2013.72. PubMed PMID: WOS:000349741600007

    Article  Google Scholar 

  36. Liu CYZ, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circulatory Physiol. 2015;309(Dec):H1793–812. https://doi.org/10.1152/ajpheart.00199.2015. PubMed Central PMCID: PMCPMC4698386

    Article  CAS  Google Scholar 

  37. Čulić V. Inflammation, coagulation, weather and arrhythmogenesis: Is there a linkage? Int J Cardiol. 2014;176:289–93. https://doi.org/10.1016/j.ijcard.2014.06.078

    Article  PubMed  Google Scholar 

  38. Kang Y, Tang H, Jiang L, Wang S, Wang X, Chen Z, et al. Air temperature variability and high-sensitivity C reactive protein in a general population of China. Sci Total Environ. 2020;749:141588. https://doi.org/10.1016/j.scitotenv.2020.141588. PubMed PMID: 32846352

    Article  CAS  PubMed  Google Scholar 

  39. Martinez-Nicolas A, Meyer M, Hunkler S, Madrid JA, Rol MA, Meyer AH, et al. Daytime variation in ambient temperature affects skin temperatures and blood pressure: Ambulatory winter/summer comparison in healthy young women. Physiol Behav. 2015;149:203–11. https://doi.org/10.1016/j.physbeh.2015.06.014. PubMed PMID: WOS:000359026400029

    Article  CAS  PubMed  Google Scholar 

  40. Foster KG, Ellis FP, Doré C, Exton-Smith AN, Weiner JS. Sweat responses in the aged. Age Ageing. 1976;5:91–101. https://doi.org/10.1093/ageing/5.2.91. PubMed PMID: 1274803

  41. Kenney WL, Hodgson JL. Heat tolerance, thermoregulation and aging. Sports Med. 1987;4:446–56. https://doi.org/10.2165/00007256-198704060-00004. PubMed PMID: WOS:A1987K887400004

    Article  CAS  PubMed  Google Scholar 

  42. Shihab HM, Meoni LA, Chu AY, Wang N-Y, Ford DE, Liang K-Y, et al. Body Mass Index and Risk of Incident Hypertension Over the Life Course The Johns Hopkins Precursors Study. Circulation 2012;126:2983–9. https://doi.org/10.1161/circulationaha.112.117333. PubMed PMID: WOS:000312549200020

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zheng L, Zhang Z, Sun Z, Li J, Zhang X, Xu C, et al. The association between body mass index and incident hypertension in rural women in China. Eur J Clin Nutr 2010;64:769–75. https://doi.org/10.1038/ejcn.2010.97. PubMed PMID: WOS:000280564400001

    Article  CAS  PubMed  Google Scholar 

  44. Grewal S, Sekhon T, Walia L, Gambhir R. Cardiovascular Response to Acute Cold Stress in Non-Obese and Obese Healthy Adults. Ethiop J Health Sci. 2015;25:47–52. https://doi.org/10.4314/ejhs.v25i1.7. PubMed PMID: 25733784

  45. Pietro Amedeo Modesti MM, Iacopo B. Weather-Related Changes in 24-Hour Blood Pressure Profile Effects of Age and Implications for Hypertension Management. Hypertension. 2006;47:155–61. https://doi.org/10.1161/01.HYP.0000199192.17126.d4. PubMed PMID: 16380524

    Article  PubMed  Google Scholar 

  46. Lewandowski J, Artyszuk L, Ostrowski F, Ciszewski J, Puchalska L, Abramczyk P. Individuals with high-normal blood pressure have different metabolic and haemodynamic characteristics to those with optimal blood pressure. Kardiologia Pol. 2012;70:252–8. PubMed PMID: WOS:000304338400010

    Google Scholar 

  47. Poskotinova LV, Demin DB, Krivonogova EV, Dieva MN, Khasanova NM. The Success of Heart Rate Variability Biofeedback Parameters in Persons with Different Levels of Blood Pressure. Annals of the Russian Academy of Medical Sciences. 2013; 68:20–3. PubMed PMID: RSCI:19671729

  48. Conen D, Ridker PM, Buring JE, Glynn RJ. Risk of cardiovascular events among women with high normal blood pressure or blood pressure progression: prospective cohort study. Bmj-Br Med J. 2007;335:432–6B. https://doi.org/10.1136/bmj.39269.672188.AE. PubMed PMID: WOS:000249346600032

    Article  Google Scholar 

  49. Yamagishi K, Sawachi S, Tamakoshi A, Iso H, Grp JS. Blood pressure levels and risk of cardiovascular disease mortality among Japanese men and women: the Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study). J Hypertension. 2019;37:1366–71. https://doi.org/10.1097/hjh.0000000000002073. PubMed PMID: WOS:000480761700008

    Article  CAS  Google Scholar 

  50. Tanaka S, Konno A, Hashimoto A, Hayase A, Takagi Y, Kondo S, et al. The influence of cold temperatures on the progression of hypertension - an epidemiological-study. J Hypertension. 1989;7:S49–S51. https://doi.org/10.1097/00004872-198902001-00015. PubMed PMID: WOS:A1989T979900015

    Article  CAS  Google Scholar 

  51. Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens. 2014;32:1582–9. https://doi.org/10.1097/HJH.0000000000000232. PubMed PMID: 24937638

    Article  CAS  PubMed  Google Scholar 

  52. Zhao H, Jivraj S, Moody A. ‘My blood pressure is low today, do you have the heating on?’ The association between indoor temperature and blood pressure. J Hypertens. 2019;37:504–12. https://doi.org/10.1097/HJH.0000000000001924. PubMed PMID: 30134311

    Article  CAS  PubMed  Google Scholar 

  53. Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. The relationship between indoor, outdoor and ambient temperatures and morning BP surges from inter-seasonally repeated measurements. J Hum Hypertens. 2014;28:482–8. https://doi.org/10.1038/jhh.2014.4. PubMed PMID: 24553634

    Article  CAS  PubMed  Google Scholar 

  54. Modesti PA. Season, temperature and blood pressure: A complex interaction. Eur J Intern Med. 2013;24:604–7. https://doi.org/10.1016/j.ejim.2013.08.002. PubMed PMID: WOS:000324384700008

    Article  PubMed  Google Scholar 

  55. Radke KJ, Izzo JL Jr. Seasonal variation in haemodynamics and blood pressure-regulating hormones. J Hum Hypertens. 2010;24:410–6. https://doi.org/10.1038/jhh.2009.75. PubMed PMID: 19776756

    Article  CAS  PubMed  Google Scholar 

  56. Franklin SS, Lopez VA, Wong ND, Mitchell GF, Larson MG, Vasan RS, et al. Single Versus Combined Blood Pressure Components and Risk for Cardiovascular Disease The Framingham Heart Study. Circulation 2009;119:243–U69. https://doi.org/10.1161/circulationaha.108.797936. PubMed PMID: WOS:000262625300009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all study participants and staff of the Worker’s Hospital of the Jinchuan Nonferrous Metals Corporation (JNMC) for their generous work and the interviewers from the Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University.

Funding

The study was supported by the National Natural Science Foundation of China (Grant Number: 41705122) and the research on the monitoring of ecological environment and health literacy of residents in Gansu, China (Grant Number: R20210005).

Author information

Authors and Affiliations

Authors

Contributions

WZ: Formal analysis, Investigation, Methodology, Software, Writing. SZ: Conceptualization, Validation, Writing-Review and Editing, Supervision. YL: Investigation, Methodology, Manuscript revised. LZ: Investigation, Methodology. GS: Investigation, Software. XZ: Investigation. MW: Investigation, Data Curation. YN: Resources. Desheng Zhang: Resources. CY: Resources. YB: Project administration, Supervision.

Corresponding author

Correspondence to Shan Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study was approved by the medical ethics committee of school of public health of Lanzhou University (No. 2015-01).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Liu, Y., Zhang, L. et al. Ambient temperature variability and blood pressure in a prospective cohort of 50,000 Chinese adults. J Hum Hypertens 37, 818–827 (2023). https://doi.org/10.1038/s41371-022-00768-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-022-00768-9

Search

Quick links