Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tracheal aspirate transcriptomic and miRNA signatures of extreme premature birth with bronchopulmonary dysplasia

Abstract

Objective

Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD.

Study design

We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 55 infants receiving invasive mechanical ventilation. Twenty-eight infants were extremely preterm and diagnosed with BPD, and 27 were term babies receiving invasive mechanical ventilation for elective procedures.

Result

We found 22 miRNAs and 33 genes differentially expressed (FDR < 0.05) in TAs of extreme preterm infants with BPD vs. term babies without BPD. Pathway analysis showed associations with inflammatory response, cellular growth/proliferation, and tissue development.

Conclusions

Specific mRNA-miRNA signatures in TAs may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MiRNA expression in newborn tracheal aspirates.
Fig. 2: Gene expression in newborn tracheal aspirates.
Fig. 3: Network analysis of differentiallly expressed genes and miRNAs.

Similar content being viewed by others

Code availability

The code used for data analysis in the current study can be found in the Silveyra lab repository, available at http://psilveyra.github.io/silveyralab/.

References

  1. Been JV, Debeer A, van Iwaarden JF, Kloosterboer N, Passos VL, Naulaers G, et al. Early alterations of growth factor patterns in bronchoalveolar lavage fluid from preterm infants developing bronchopulmonary dysplasia. Pediatr Res. 2010;67:83–9.

    Article  CAS  PubMed  Google Scholar 

  2. Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999;46:641–3.

    Article  CAS  PubMed  Google Scholar 

  3. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–61.

    Article  CAS  PubMed  Google Scholar 

  4. Glass HC, Costarino AT, Stayer SA, Brett CM, Cladis F, Davis PJ. Outcomes for extremely premature infants. Anesthesia analgesia. 2015;120:1337–51.

    Article  PubMed  Google Scholar 

  5. Jankov RP, Keith Tanswell A. Growth factors, postnatal lung growth and bronchopulmonary dysplasia. Paediatr Respir Rev. 2004;5:S265–75.

    Article  PubMed  Google Scholar 

  6. Northway WH, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276:357–68.

    Article  PubMed  Google Scholar 

  7. Jensen EA, Schmidt B. Epidemiology of bronchopulmonary dysplasia. Birth Defects Res A Clin Mol Teratol. 2014;100:145–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI workshop on the primary prevention of chronic lung diseases. Ann Am Thorac Soc. 2014;11:S146–53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akangire G, Manimtim W, Nyp MF, Noel-MacDonnell J, Kays AN, Truog WE, et al. Clinical outcomes among diagnostic subgroups of infants with severe bronchopulmonary dysplasia through 2 years of age. Am J Perinatol. 2018;35:1376–87.

    Article  PubMed  Google Scholar 

  10. Bancalari E, Jain D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology. 2019;115:384–91.

    Article  PubMed  Google Scholar 

  11. Ryan RM, Feng R, Bazacliu C, Ferkol TW, Ren CL, Mariani TJ, et al. Black race is associated with a lower risk of bronchopulmonary dysplasia. J Pediatr. 2019;207:130–5.e132.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rivera L, Siddaiah R, Oji-Mmuo C, Silveyra GR, Silveyra P. Biomarkers for bronchopulmonary dysplasia in the preterm infant. Front Pediatr. 2016;4:33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 2009;7:e1000238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67:129–39.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X, Chu X, Gong X, Zhou H, Cai C. The expression of miR-125b in Nrf2-silenced A549 cells exposed to hyperoxia and its relationship with apoptosis. J Cell Mol Med. 2020;24:965–72.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Yin J, Wang X, Liu H, Hu Y, Yan X, et al. Changing expression profiles of mRNA, lncRNA, circRNA, and miRNA in lung tissue reveal the pathophysiological of bronchopulmonary dysplasia (BPD) in mouse model. J Cell Biochem. 2019;120:9369–80.

    Article  CAS  PubMed  Google Scholar 

  18. Lal CV, Olave N, Travers C, Rezonzew G, Dolma K, Simpson A, et al. Exosomal microRNA predicts and protects against severe bronchopulmonary dysplasia in extremely premature infants. JCI Insight. 2018;3:e93994.

    Article  PubMed Central  Google Scholar 

  19. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827–87.

    Article  CAS  PubMed  Google Scholar 

  20. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tomankova T, Petrek M, Kriegova E. Involvement of microRNAs in physiological and pathological processes in the lung. Respir Res. 2010;11:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharya S, Go D, Krenitsky DL, Huyck HL, Solleti SK, Lunger VA, et al. Genome-wide transcriptional profiling reveals connective tissue mast cell accumulation in bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2012;186:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pietrzyk JJ, Kwinta P, Wollen EJ, Bik-Multanowski M, Madetko-Talowska A, Günther CC, et al. Gene expression profiling in preterm infants: new aspects of bronchopulmonary dysplasia development. PLoS ONE. 2013;8:e78585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fulton CT, Cui TX, Goldsmith AM, Bermick J, Popova AP. Gene expression signatures point to a male sex-specific lung mesenchymal cell PDGF receptor signaling defect in infants developing bronchopulmonary dysplasia. Sci Rep. 2018;8:17070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163:1723–9.

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    CAS  PubMed  Google Scholar 

  27. Schwarzenbach H, da Silva AM, Calin G, Pantel K. Data normalization strategies for microRNA quantification. Clin Chem. 2015;61:1333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  30. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  31. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010;11:1–9.

    Article  CAS  Google Scholar 

  33. Fuentes N, Roy A, Mishra V, Cabello N, Silveyra P. Sex-specific microRNA expression networks in an acute mouse model of ozone-induced lung inflammation. Biol Sex Differ. 2018;9:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nathe KE, Mancuso CJ, Parad R, Van Marter LJ, Martin CR, Stoler-Barak L, et al. Innate immune activation in neonatal tracheal aspirates suggests endotoxin-driven inflammation. Pediatr Res. 2012;72:203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eldredge LC, Creasy RS, Presnell S, Debley JS, Juul SE, Mayock DE, et al. Infants with evolving bronchopulmonary dysplasia demonstrate monocyte-specific expression of IL-1 in tracheal aspirates. Am J Physiol Lung Cell Mol Physiol. 2019;317:L49–56.

    Article  CAS  PubMed  Google Scholar 

  36. Merritt TA, Deming DD, Boynton BR. The ‘new’ bronchopulmonary dysplasia: challenges and commentary. Semin Fetal Neonatal Med. 2009;14:345–57.

    Article  PubMed  Google Scholar 

  37. Ambalavanan N, Cotten CM, Page GP, Carlo WA, Murray JC, Bhattacharya S, et al. Integrated genomic analyses in bronchopulmonary dysplasia. J Pediatr. 2015;166:531–7.e513.

    Article  CAS  PubMed  Google Scholar 

  38. Alam MA, Betal SGN, Aghai ZH, Bhandari V. Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res. 2019;86:579–88.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang X, Peng W, Zhang S, Wang C, He X, Zhang Z, et al. MicroRNA expression profile in hyperoxia-exposed newborn mice during the development of bronchopulmonary dysplasia. Respir Care. 2011;56:1009–15.

    Article  PubMed  Google Scholar 

  40. Wu YT, Chen WJ, Hsieh WS, Tsao PN, Yu SL, Lai CY, et al. MicroRNA expression aberration associated with bronchopulmonary dysplasia in preterm infants: a preliminary study. Respir Care. 2013;58:1527–35.

    Article  PubMed  Google Scholar 

  41. Dravet-Gounot P, Morin C, Jacques S, Dumont F, Ely-Marius F, Vaiman D, et al. Lung microRNA deregulation associated with impaired alveolarization in rats after intrauterine growth restriction. PLoS ONE. 2017;12:e0190445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yang Y, Qiu J, Kan Q, Zhou XG, Zhou XY. MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis. Genet Mol Res. 2013;12:5195–206.

    Article  CAS  PubMed  Google Scholar 

  43. Lio A, Rosati P, Pastorino R, Cota F, Tana M, Tirone C, et al. Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: an observational study. BMJ Open. 2017;7:e015232.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jung YH, Park Y, Kim BI, Choi CW. Length at birth z-score is inversely associated with an increased risk of bronchopulmonary dysplasia or death in preterm infants born before 32 gestational weeks: a nationwide cohort study. PLoS ONE. 2019;14:e0217739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DeMauro SB, Jensen EA, Bann CM, Bell EF, Hibbs AM, Hintz SR, et al. Home oxygen and 2-year outcomes of preterm infants with bronchopulmonary dysplasia. Pediatrics. 2019;143:e20182956.

    Article  PubMed  Google Scholar 

  46. Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The future of bronchopulmonary dysplasia: emerging pathophysiological concepts and potential new avenues of treatment. Front Med. 2017;4:61.

    Article  Google Scholar 

  47. Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009;229:173–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jember AG, Zuberi R, Liu FT, Croft M. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J Exp Med. 2001;193:387–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong J, Carey WA, Abel S, Collura C, Jiang G, Tomaszek S, et al. MicroRNA-mRNA interactions in a murine model of hyperoxia-induced bronchopulmonary dysplasia. BMC Genom. 2012;13:204.

    Article  CAS  Google Scholar 

  50. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8:702–10.

    Article  CAS  PubMed  Google Scholar 

  51. Lal CV, Kandasamy J, Dolma K, Ramani M, Kumar R, Wilson L, et al. Early airway microbial metagenomic and metabolomic signatures are associated with development of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2018;315:L810–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pan Y, Du L, Ai Q, Song S, Tang X, Zhu D, et al. Microbial investigations in throat swab and tracheal aspirate specimens are beneficial to predict the corresponding endotracheal tube biofilm flora among intubated neonates with ventilator-associated pneumonia. Exp Ther Med. 2017;14:1450–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Susan DiAngelo for assistance with sample and data collection. The authors thank the Pennsylvania State University College of Medicine Genome Sciences Core Facility for RNAseq analysis and Real Time PCR equipment.

Funding

This work was supported by grants from Children’s Miracle Network (PS, CNO), Center for Research for Women and Newborn Health (PS, NF, RS), and Penn State College of Medicine faculty endowment funds (CNO, PS, RS).

Author information

Authors and Affiliations

Authors

Contributions

CNO participated in design of work, acquired samples, analyzed and interpreted data, drafted the work, and revised the work; RS participated in design of work, acquired samples, analyzed data, interpreted work, drafted the work, and revised the work; DTM purified samples, conducted validation studies, analyzed data, interpreted work, drafted the work, prepared figures, and revised the work; MAP purified and annotated samples, obtained array data, analyzed the work, and revised the work; DS acquired samples, obtained data, and revised the work; AD acquired samples, obtained data, and revised the work; NF conducted pathway analysis, created tables, and revised the work; YIK conducted RNA sequencing experiments and revised the work, JAH participated in design of work, and revised the work, NJT participated in design of work, and revised the work; PS led all stages of work from initial conceptualization, study design, data generation, transcriptomics, bioinformatics analysis and interpretation, and manuscript generation and revision.

Corresponding author

Correspondence to Patricia Silveyra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oji-Mmuo, C.N., Siddaiah, R., Montes, D.T. et al. Tracheal aspirate transcriptomic and miRNA signatures of extreme premature birth with bronchopulmonary dysplasia. J Perinatol 41, 551–561 (2021). https://doi.org/10.1038/s41372-020-00868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00868-9

This article is cited by

Search

Quick links