Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomics and gene therapy

CTCF-mediated genome organization and leukemogenesis

Abstract

Recent technological advancements and genome-wide studies provide compelling evidence that dynamic chromatin interaction and three-dimensional genome organization in nuclei play an important role in regulating gene expression. Mammalian genomes consist of many small functional domains termed topologically associated domains (TADs), many of them organized by CCCTC-binding factor (CTCF) and the cohesion complex. Changes in genome TADs might result in inappropriate promoter/enhancer communications leading to activation of oncogenes or suppression of tumor suppressors. During normal hematopoiesis and leukemogenesis, genome structure alters considerably to facilitate normal and malignant hematopoiesis, respectively. Delineating theses normal and abnormal processes will evolve our understanding of disease pathogenesis and development of potential treatment strategies. This review highlights the role of CTCF and its associated protein complexes in three-dimensional genome organization in development and leukemogenesis, as well as the roles of CTCF boundary defined TAD in transcription regulation. We further explore the function of chromatin modulators, such as CTCF, cohesin, and long noncoding RNAs (lncRNAs) in chromosomal interactions and hematopoietic genome organization. Finally, we focus on the implication of 3D genome alteration in the pathogenesis of leukemia and provide a scientific basis for targeted intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The schematic presentation of chicken β-globin locus, in which the first vertebrate chromatin insulator, cHS4, was identified.
Fig. 2: CTCF-mediated 3D genome organization regulates developmental specific transcription program.
Fig. 3: The model depicts that cell type specific formation of TADs/sub-TADs at the TAL1 locus modulates expression of TAL1 oncogene.

Similar content being viewed by others

References

  1. Valton AL, Dekker J. TAD disruption as oncogenic driver. Curr Opin Genet Dev. 2016;36:34–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369–81.

    CAS  PubMed  Google Scholar 

  3. Taberlay PC, Achinger-Kawecka J, Lun AT, Buske FA, Sabir K, Gould CM, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Luo H, Wang F, Zha J, Li H, Yan B, Du Q, et al. CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood. 2018;132:837–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science. 2015;347:1017–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum Genet. 1982;62:201–9.

    CAS  PubMed  Google Scholar 

  7. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S. Chromosome territories-a functional nuclear landscape. Curr Opin Cell Biol. 2006;18:307–16.

    CAS  PubMed  Google Scholar 

  8. Noordermeer D, Branco MR, Splinter E, Klous P, van Ijcken W, Swagemakers S, et al. Transcription and chromatin organization of a housekeeping gene cluster containing an integrated beta-globin locus control region. PLoS Genet. 2008;4:e1000016.

    PubMed  PubMed Central  Google Scholar 

  9. Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell. 2009;137:1194–211.

    PubMed  PubMed Central  Google Scholar 

  10. Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nat Rev Genet. 2018;19:789–800.

    CAS  PubMed  Google Scholar 

  11. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014;159:374–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell. 2015;163:1611–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98:387–96.

    CAS  PubMed  Google Scholar 

  14. Chung JH, Whiteley M, Felsenfeld G. A 5’ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell. 1993;74:505–14.

    CAS  PubMed  Google Scholar 

  15. Bushey AM, Dorman ER, Corces VG. Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol Cell. 2008;32:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet. 2006;7:703–13.

    CAS  PubMed  Google Scholar 

  17. West AG, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. Genes Dev. 2002;16:271–88.

    PubMed  Google Scholar 

  18. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res. 2009;19:24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zlatanova J, Caiafa P. CTCF and its protein partners: divide and rule? J Cell Sci. 2009;122:1275–84.

    CAS  PubMed  Google Scholar 

  20. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell. 2004;13:291–8.

    CAS  PubMed  Google Scholar 

  21. Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell. 2016;164:1110–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Haarhuis JHI, Sedeno Cacciatore A, Oldenkamp R, van Ruiten MS, Willems L, et al. The structural basis for cohesin-CTCF-anchored loops. Nature. 2020;578:472–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell. 2008;132:422–33.

    CAS  PubMed  Google Scholar 

  24. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 2008;451:796–801.

    CAS  PubMed  Google Scholar 

  25. Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, et al. CTCF physically links cohesin to chromatin. Proc Natl Acad Sci USA. 2008;105:8309–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by loop extrusion. Cell Rep. 2016;15:2038–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci USA. 2018;115:E6697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA. 2014;111:996–1001.

    CAS  PubMed  Google Scholar 

  29. Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature. 2009;460:410–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 2009;5:e1000739.

    PubMed  PubMed Central  Google Scholar 

  31. Kojic A, Cuadrado A, De Koninck M, Gimenez-Llorente D, Rodriguez-Corsino M, Gomez-Lopez G, et al. Distinct roles of cohesin-SA1 and cohesin-SA2 in 3D chromosome organization. Nat Struct Mol Biol. 2018;25:496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell. 2013;153:1281–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell. 2013;154:801–13.

    CAS  PubMed  Google Scholar 

  34. Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 2010;24:2543–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kung JT, Kesner B, An JY, Ahn JY, Cifuentes-Rojas C, Colognori D, et al. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Mol Cell. 2015;57:361–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152:1308–23.

    CAS  PubMed  Google Scholar 

  37. Saldana-Meyer R, Rodriguez-Hernaez J, Escobar T, Nishana M, Jacome-Lopez K, Nora EP, et al. RNA interactions are essential for CTCF-mediated genome organization. Mol Cell. 2019;76:412–22.e415

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldana-Meyer R, Reinberg D, et al. Distinct classes of chromatin loops revealed by deletion of an RNA-binding region in CTCF. Mol Cell. 2019;76:395–411.e313.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, et al. HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell. 2019;36:645–59.e648.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L, et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia. 2002;16:186–95.

    CAS  PubMed  Google Scholar 

  42. Andreeff M, Ruvolo V, Gadgil S, Zeng C, Coombes K, Chen W, et al. HOX expression patterns identify a common signature for favorable AML. Leukemia. 2008;22:2041–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dou DR, Calvanese V, Sierra MI, Nguyen AT, Minasian A, Saarikoski P, et al. Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nat Cell Biol. 2016;18:595–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawrence HJ, Christensen J, Fong S, Hu YL, Weissman I, Sauvageau G, et al. Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. Blood. 2005;106:3988–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng C, Li Y, Liang S, Cui K, Salz T, Yang H, et al. USF1 and hSET1A mediated epigenetic modifications regulate lineage differentiation and HoxB4 transcription. PLoS Genet. 2013;9:e1003524.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. 2013;27:1000–8.

    CAS  PubMed  Google Scholar 

  47. Spencer DH, Young MA, Lamprecht TL, Helton NM, Fulton R, O’Laughlin M, et al. Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia. 2015;29:1279–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet. 2011;43:630–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38:1341–7.

    CAS  PubMed  Google Scholar 

  51. Wallace JA, Felsenfeld G. We gather together: insulators and genome organization. Curr Opin Genet Dev. 2007;17:400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sexton T, Kurukuti S, Mitchell JA, Umlauf D, Nagano T, Fraser P. Sensitive detection of chromatin coassociations using enhanced chromosome conformation capture on chip. Nat Protoc. 2012;7:1335–50.

    CAS  PubMed  Google Scholar 

  54. Ren G, Jin W, Cui K, Rodrigez J, Hu G, Zhang Z, et al. CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol Cell. 2017;67:1049–58.e1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Viny AD, Bowman RL, Liu Y, Lavallee VP, Eisman SE, Xiao W, et al. Cohesin members Stag1 and Stag2 display distinct roles in chromatin accessibility and topological control of HSC self-renewal and differentiation. Cell Stem Cell. 2019;25:682–96.e688.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodriguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L, El-Idrissi I, et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 2017;31:2264–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Narendra V, Bulajic M, Dekker J, Mazzoni EO, Reinberg D. CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes Dev. 2016;30:2657–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, et al. CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell. 2015;162:900–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, et al. CTCF binding polarity determines chromatin looping. Mol Cell. 2015;60:676–84.

    PubMed  Google Scholar 

  60. Schoenfelder S, Fraser P. Long-range enhancer-promoter contacts in gene expression control. Nat Rev Genet. 2019;20:437–55.

    CAS  PubMed  Google Scholar 

  61. Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R, Ngan CY, et al. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature. 2013;504:306–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interaction landscape of gene promoters. Nature. 2012;489:109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang H, Emerson DJ, Gilgenast TG, Titus KR, Lan Y, Huang P, et al. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature. 2019;576:158–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128:787–800.

    CAS  PubMed  Google Scholar 

  65. Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127:29–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Google Scholar 

  68. Haas S, Trumpp A, Milsom MD. Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 2018;22:627–38.

    CAS  PubMed  Google Scholar 

  69. Chen C, Yu W, Tober J, Gao P, He B, Lee K, et al. Spatial genome re-organization between fetal and adult hematopoietic stem cells. Cell Rep. 2019;29:4200–11.e4207.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Patel B, Kang Y, Cui K, Litt M, Riberio MS, Deng C, et al. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia. 2014;28:349–61.

    CAS  PubMed  Google Scholar 

  71. Zhou Y, Kurukuti S, Saffrey P, Vukovic M, Michie AM, Strogantsev R, et al. Chromatin looping defines expression of TAL1, its flanking genes, and regulation in T-ALL. Blood. 2013;122:4199–209.

    CAS  PubMed  Google Scholar 

  72. Li Y, Liao Z, Luo H, Benyoucef A, Kang Y, Lai Q, et al. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis. Nucleic Acids Res. 2020;48:3119–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hyle J, Zhang Y, Wright S, Xu B, Shao Y, Easton J, et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer-promoter looping. Nucleic Acids Res. 2019;47:6699–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351:1454–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Katainen R, Dave K, Pitkanen E, Palin K, Kivioja T, Valimaki N, et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat Genet. 2015;47:818–21.

    CAS  PubMed  Google Scholar 

  76. Chiarle R, Zhang Y, Frock RL, Lewis SM, Molinie B, Ho YJ, et al. Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147:107–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zeisig BB, Kulasekararaj AG, Mufti GJ, So CW. SnapShot: acute myeloid leukemia. Cancer Cell. 2012;22:698–e691.

    CAS  PubMed  Google Scholar 

  78. Winters AC, Bernt KM. MLL-rearranged leukemias—an update on science and clinical approaches. Front Pediatr. 2017;5:4.

    PubMed  PubMed Central  Google Scholar 

  79. Rice KL, Licht JD. HOX deregulation in acute myeloid leukemia. J Clin Investig. 2007;117:865–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009;23:1490–9.

    CAS  PubMed  Google Scholar 

  81. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45:1232–7.

    CAS  PubMed  Google Scholar 

  82. Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia. 2017;31:798–807.

    CAS  PubMed  Google Scholar 

  83. Brunetti L, Gundry MC, Sorcini D, Guzman AG, Huang YH, Ramabadran R, et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell. 2018;34:499–512.e499.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang AJ, Han Y, Jia N, Chen P, Minden MD. NPM1c impedes CTCF functions through cytoplasmic mislocalization in acute myeloid leukemia. Leukemia. 2020;34:1278–90.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleague in the SH and YQ Labs for their comments on this paper. The authors also thank Rachael Mills for editing the paper. This work was supported by the grants from the National Institute of Health (R01DK110108, R01CA204044, R01HL141950 to SH; R01HL144712 to YQ) and the Four Diamonds Fund (SH).

Author information

Authors and Affiliations

Authors

Contributions

YQ and SH both conceived the idea and wrote the paper.

Corresponding authors

Correspondence to Yi Qiu or Suming Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Huang, S. CTCF-mediated genome organization and leukemogenesis. Leukemia 34, 2295–2304 (2020). https://doi.org/10.1038/s41375-020-0906-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0906-x

This article is cited by

Search

Quick links