Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Minimal residual disease

Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations

Abstract

Several methodologies that rely on the detection of immunophenotypic or molecular abnormalities of the neoplastic cells are now available to quantify measurable (“minimal”) residual disease (MRD) in acute myeloid leukemia (AML). Although the perfect MRD test does not (yet) exist, the strong association between MRD and adverse patient outcomes has provided the impetus to use measures of MRD as biomarker in the routine care of AML patients and during clinical trials. MRD test results may inform the selection of postremission therapy in some patients but evidence supporting the use of MRD as predictive biomarker is still limited. Several retrospective studies have shown that conversion from undetectable to detectable MRD or increasing MRD over time is associated with overt disease recurrence, and MRD testing may therefore be valuable as a monitoring biomarker for early detection of relapse. Interpreting serial MRD data is complex, with open questions regarding the optimal timing and frequency of testing, as well as the identification of test-specific thresholds to define relapse. Importantly, it is unknown whether intervening at the time of MRD detection, rather than at overt disease recurrence, improves outcomes. Finally, using MRD as a surrogate efficacy-response biomarker to accelerate drug development/approval has already been accepted by regulatory authorities in other diseases and is of great interest as a potential strategy in AML. While the prognostic value of MRD in AML is well established, data from prospective clinical trials confirming that treatment effects on MRD directly relate to clinical outcomes are needed to further establish the role of MRD as a surrogate endpoint in AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hagenbeek A, Martens ACM. Kinetics of minimal residual disease in a rat model for human acute myelocytic leukemia. In: Baum SJ, Ledney GD, van Bekkum DW, editors. Experimental hematology today. New York: Springer; 1980. p. 215–21.

  2. Hagenbeek A, Martens ACM. Minimal residual disease in acute leukemia: from experimental models to man. Bone Marrow Transplant. 1989;4:68–9.

    PubMed  Google Scholar 

  3. Freireich EJ, Cork A, Stass SA, McCredie KB, Keating MJ, Estey EH, et al. Cytogenetics for detection of minimal residual disease in acute myeloblastic leukemia. Leukemia. 1992;6:500–6.

    CAS  PubMed  Google Scholar 

  4. Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood. 2018;131:1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31:1482–90.

    Article  CAS  PubMed  Google Scholar 

  6. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018;2:1356–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buccisano F, Maurillo L, Schuurhuis GJ, Del Principe MI, Di Veroli A, Gurnari C, et al. The emerging role of measurable residual disease detection in AML in morphologic remission. Semin Hematol. 2019;56:125–30.

    Article  CAS  PubMed  Google Scholar 

  8. Ossenkoppele G, Schuurhuis GJ, van de Loosdrecht A, Cloos J. Can we incorporate MRD assessment into clinical practice in AML? Best Pract Res Clin Haematol. 2019;32:186–91.

    Article  PubMed  Google Scholar 

  9. Voso MT, Ottone T, Lavorgna S, Venditti A, Maurillo L, Lo-Coco F, et al. MRD in AML: the role of new techniques. Front Oncol. 2019;9:655.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Freeman SD, Hourigan CS. MRD evaluation of AML in clinical practice: are we there yet? Hematol Am Soc Hematol Educ Program. 2019;2019:557–69.

    Article  Google Scholar 

  11. Ghannam J, Dillon LW, Hourigan CS. Next-generation sequencing for measurable residual disease detection in acute myeloid leukaemia. Br J Haematol. 2020;188:77–85.

    Article  PubMed  Google Scholar 

  12. Paterno G, Del Principe MI, Venditti A. Detection and management of acute myeloid leukemia measurable residual disease: is it standard of care? Curr Opin Hematol. 2020;27:81–7.

    Article  PubMed  Google Scholar 

  13. Schwind S, Jentzsch M, Bach E, Stasik S, Thiede C, Platzbecker U. Use of minimal residual disease in acute myeloid leukemia therapy. Curr Treat Options Oncol. 2020;21:8.

    Article  PubMed  Google Scholar 

  14. Yoest JM, Shirai CL, Duncavage EJ. Sequencing-based measurable residual disease testing in acute myeloid leukemia. Front Cell Dev Biol. 2020;8:249.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Short NJ, Rafei H, Daver N, Hwang H, Ning J, Jorgensen JL, et al. Prognostic impact of complete remission with MRD negativity in patients with relapsed or refractory AML. Blood Adv. 2020;4:6117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mushtaq MU, Harrington AM, Chaudhary SG, Michaelis LC, Carlson KB, Abedin S, et al. Comparison of salvage chemotherapy regimens and prognostic significance of minimal residual disease in relapsed/refractory acute myeloid leukemia. Leuk Lymphoma. 2021;62:158–66.

    Article  CAS  PubMed  Google Scholar 

  17. Buckley SA, Wood BL, Othus M, Hourigan CS, Ustun C, Linden MA, et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: a meta-analysis. Haematologica. 2017;102:865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, et al. Impact of measurable residual disease on survival outcomes in patients with acute myeloid leukemia: a meta-analysis. JAMA Oncol. 2020;6:1890–9.

  19. FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) resource. FDA-NIH Biomarker Working Group. 2021. https://www.ncbi.nlm.nih.gov/books/NBK338448/. Accessed 27 Jul 2020.

  20. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharm Ther. 2001;69:89–95.

    Article  Google Scholar 

  21. Sanz MA, Fenaux P, Tallman MS, Estey EH, Löwenberg B, Naoe T, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019;133:1630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Othus M, Gale RP, Hourigan CS, Walter RB. Statistics and measurable residual disease (MRD) testing: uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant. 2020;55:843–50.

    Article  PubMed  Google Scholar 

  24. Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–8.

    Article  CAS  PubMed  Google Scholar 

  25. Latham S, Hughes E, Budgen B, Mechinaud F, Crock C, Ekert H, et al. Sources of error in measurement of minimal residual disease in childhood acute lymphoblastic leukemia. PLoS ONE. 2017;12:e0185556.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Godwin CD, Zhou Y, Othus M, Asmuth MM, Shaw CM, Gardner KM, et al. Acute myeloid leukemia measurable residual disease detection by flow cytometry in peripheral blood versus bone marrow. Blood. 2021;137:569–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. U.S. Department of Health and Human Services. Hematologic malignancies: regulatory considerations for use of minimal residual disease in development of drug and biological products for treatment—guidance for industry. U.S. Department of Health and Human Services. 2020. https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances. Accessed 4 Jul 2020.

  28. Othus M, Wood BL, Stirewalt DL, Estey EH, Petersdorf SH, Appelbaum FR, et al. Effect of measurable (‘minimal’) residual disease (MRD) information on prediction of relapse and survival in adult acute myeloid leukemia. Leukemia. 2016;30:2080–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boddu P, Jorgensen J, Kantarjian H, Borthakur G, Kadia T, Daver N, et al. Achievement of a negative minimal residual disease state after hypomethylating agent therapy in older patients with AML reduces the risk of relapse. Leukemia. 2018;32:241–4.

    Article  CAS  PubMed  Google Scholar 

  30. Winters AC, Gutman JA, Purev E, Nakic M, Tobin J, Chase S, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019;3:2911–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Getta BM, Devlin SM, Levine RL, Arcila ME, Mohanty AS, Zehir A, et al. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol Blood Marrow Transplant. 2017;23:1064–71.

    Article  CAS  PubMed  Google Scholar 

  32. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, et al. Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med. 2018;378:1189–99.

    Article  CAS  PubMed  Google Scholar 

  33. Versluis J, Kalin B, Zeijlemaker W, Passweg J, Graux C, Manz MG, et al. Graft-versus-leukemia effect of allogeneic stem-cell transplantation and minimal residual disease in patients with acute myeloid leukemia in first complete remission. JCO Precision. Oncology. 2017;1:1–13.

    Google Scholar 

  34. Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood. 2013;121:4056–62.

    Article  CAS  PubMed  Google Scholar 

  35. Venditti A, Piciocchi A, Candoni A, Melillo L, Calafiore V, Cairoli R, et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood. 2019;134:935–45.

    Article  CAS  PubMed  Google Scholar 

  36. Aoudjhane M, Labopin M, Gorin NC, Shimoni A, Ruutu T, Kolb HJ, et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Leukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia. 2005;19:2304–12.

    Article  CAS  PubMed  Google Scholar 

  37. Shimoni A, Hardan I, Shem-Tov N, Yeshurun M, Yerushalmi R, Avigdor A, et al. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: the role of dose intensity. Leukemia. 2006;20:322–8.

    Article  CAS  PubMed  Google Scholar 

  38. Alyea EP, Kim HT, Ho V, Cutler C, DeAngelo DJ, Stone R, et al. Impact of conditioning regimen intensity on outcome of allogeneic hematopoietic cell transplantation for advanced acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2006;12:1047–55.

    Article  PubMed  Google Scholar 

  39. Ringdén O, Labopin M, Ehninger G, Niederwieser D, Olsson R, Basara N, et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J Clin Oncol. 2009;27:4570–7.

    Article  PubMed  Google Scholar 

  40. Luger SM, Ringdén O, Zhang MJ, Pérez WS, Bishop MR, Bornhauser M, et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2012;47:203–11.

    Article  CAS  PubMed  Google Scholar 

  41. Scott BL, Pasquini MC, Logan BR, Wu J, Devine SM, Porter DL, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol. 2017;35:1154–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hourigan CS, Dillon LW, Gui G, Logan BR, Fei M, Ghannam J, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol. 2020;38:1273–83.

    Article  CAS  PubMed  Google Scholar 

  43. Craddock C, Jackson A, Loke J, Siddique S, Hodgkinson A, Mason J, et al. Augmented reduced-intensity regimen does not improve postallogeneic transplant outcomes in acute myeloid leukemia. J Clin Oncol. 2021;39:768–78.

  44. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood. 1998;92:784–9.

    Article  CAS  PubMed  Google Scholar 

  45. Rücker FG, Agrawal M, Corbacioglu A, Weber D, Kapp-Schwoerer S, Gaidzik VI, et al. Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): results from the AML Study Group. Blood. 2019;134:1608–18.

    Article  PubMed  Google Scholar 

  46. Ommen HB, Nyvold CG, Brændstrup K, Andersen BL, Ommen IB, Hasle H, et al. Relapse prediction in acute myeloid leukaemia patients in complete remission using WT1 as a molecular marker: development of a mathematical model to predict time from molecular to clinical relapse and define optimal sampling intervals. Br J Haematol. 2008;141:782–91.

    Article  CAS  PubMed  Google Scholar 

  47. Ommen HB, Schnittger S, Jovanovic JV, Ommen IB, Hasle H, Østergaard M, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115:198–205.

    Article  CAS  PubMed  Google Scholar 

  48. Hokland P, Ommen HB. Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood. 2011;117:2577–84.

    Article  CAS  PubMed  Google Scholar 

  49. Ommen HB, Touzart A, MacIntyre E, Kern W, Haferlach T, Haferlach C, et al. The kinetics of relapse in DEK-NUP214-positive acute myeloid leukemia patients. Eur J Haematol. 2015;95:436–41.

    Article  CAS  PubMed  Google Scholar 

  50. Puckrin R, Atenafu EG, Claudio JO, Chan S, Gupta V, Maze D, et al. Measurable residual disease monitoring provides insufficient lead-time to prevent morphologic relapse in the majority of patients with core-binding factor acute myeloid leukemia. Haematologica. 2021;106:56–63.

    Article  CAS  PubMed  Google Scholar 

  51. Lo Coco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999;94:2225–9.

    Article  CAS  PubMed  Google Scholar 

  52. Esteve J, Escoda L, Martín G, Rubio V, Díaz-Mediavilla J, González M, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia. 2007;21:446–52.

    Article  CAS  PubMed  Google Scholar 

  53. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27:3650–8.

    Article  CAS  PubMed  Google Scholar 

  54. Platzbecker U, Middeke JM, Sockel K, Herbst R, Wolf D, Baldus CD, et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Lancet Oncol. 2018;19:1668–79.

    Article  CAS  PubMed  Google Scholar 

  55. Tiong IS, Dillon R, Ivey A, Teh TC, Nguyen P, Cummings N, et al. Venetoclax induces rapid elimination of NPM1 mutant measurable residual disease in combination with low-intensity chemotherapy in acute myeloid leukaemia. Br J Haematol. 2021;192:1026–30.

  56. Bataller A, Oñate G, Diaz-Beyá M, Guijarro F, Garrido A, Vives S, et al. Acute myeloid leukemia with NPM1 mutation and favorable European LeukemiaNet category: outcome after preemptive intervention based on measurable residual disease. Br J Haematol. 2020;191:52–61.

    Article  CAS  PubMed  Google Scholar 

  57. Gianfaldoni G, Mannelli F, Intermesoli T, Bencini S, Giupponi D, Farina G, et al. Early peripheral clearance of leukemia-associated immunophenotypes in AML: centralized analysis of a randomized trial. Blood Adv. 2020;4:301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wong HY, Sung AD, Lindblad KE, Sheela S, Roloff GW, Rizzieri D, et al. Molecular measurable residual disease testing of blood during AML cytotoxic therapy for early prediction of clinical response. Front Oncol. 2018;8:669.

    Article  PubMed  Google Scholar 

  59. U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for industry: expedited programs for serious conditions—drugs and biologics. 2014. https://www.fda.gov/media/86377/download. Accessed 7 Oct 2020.

  60. Prebet T, Bertoli S, Delaunay J, Pigneux A, Delabesse E, Mozziconacci MJ, et al. Anthracycline dose intensification improves molecular response and outcome of patients treated for core binding factor acute myeloid leukemia. Haematologica. 2014;99:e185–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lambert J, Lambert J, Nibourel O, Pautas C, Hayette S, Cayuela JM, et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget. 2014;5:6280–8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Löwenberg B, Pabst T, Maertens J, van Norden Y, Biemond BJ, Schouten HC, et al. Therapeutic value of clofarabine in younger and middle-aged (18-65 years) adults with newly diagnosed AML. Blood. 2017;129:1636–45.

    Article  PubMed  Google Scholar 

  63. Kapp-Schwoerer S, Weber D, Corbacioglu A, Gaidzik VI, Paschka P, Krönke J, et al. Impact of gemtuzumab ozogamicin on MRD and relapse risk in patients with NPM1-mutated AML: results from the AMLSG 09-09 trial. Blood. 2020;136:3041–50.

    Article  CAS  PubMed  Google Scholar 

  64. Wei AH, Döhner H, Pocock C, Montesinos P, Afanasyev B, Dombret H, et al. Oral azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med. 2020;383:2526–37.

    Article  CAS  PubMed  Google Scholar 

  65. Dimier N, Delmar P, Ward C, Morariu-Zamfir R, Fingerle-Rowson G, Bahlo J, et al. A model for predicting effect of treatment on progression-free survival using MRD as a surrogate end point in CLL. Blood. 2018;131:955–62.

    Article  CAS  PubMed  Google Scholar 

  66. Avet-Loiseau H, Ludwig H, Landgren O, Paiva B, Morris C, Yang H, et al. Minimal residual disease status as a surrogate endpoint for progression-free survival in newly diagnosed multiple myeloma studies: a meta-analysis. Clin Lymphoma Myeloma Leuk. 2020;20:e30–7.

    Article  PubMed  Google Scholar 

  67. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3:e170580.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Galimberti S, Devidas M, Lucenti A, Cazzaniga G, Möricke A, Bartram CR, et al. Validation of minimal residual disease as surrogate endpoint for event-free survival in childhood acute lymphoblastic leukemia. JNCI Cancer Spectr. 2018;2:pky069.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Intramural Research Program of the National Heart, Lung, and Blood Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland B. Walter.

Ethics declarations

Conflict of interest

The laboratory of CSH has received research funding from Merck Sharp & Dohme and Sellas Life Sciences. The other authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, R.B., Ofran, Y., Wierzbowska, A. et al. Measurable residual disease as a biomarker in acute myeloid leukemia: theoretical and practical considerations. Leukemia 35, 1529–1538 (2021). https://doi.org/10.1038/s41375-021-01230-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01230-4

This article is cited by

Search

Quick links