Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

Insufficiency of FZR1 disturbs HSC quiescence by inhibiting ubiquitin-dependent degradation of RUNX1 in aplastic anemia

Abstract

FZR1 has been implicated as a master regulator of the cell cycle and quiescence, but its roles and molecular mechanisms in the pathogenesis of severe aplastic anemia (SAA) are unclear. Here, we report that FZR1 is downregulated in SAA HSCs compared with healthy control and is associated with decreased quiescence of HSC. Haploinsufficiency of Fzr1 shows impaired quiescence and self-renewal ability of HSC in two Fzr1 heterozygous knockout mouse models. Mechanistically, FZR1 insufficiency inhibits the ubiquitination of RUNX1 protein at lysine 125, leading to the accumulation of RUNX1 protein, which disturbs the quiescence of HSCs in SAA patients. Moreover, downregulation of Runx1 reversed the loss of quiescence and impaired long-term self-renew ability in Fzr1+/− HSCs in vivo and impaired repopulation capacity in BM from SAA patients in vitro. Our findings, therefore, raise the possibility of a decisive role of the FZR1-RUNX1 pathway in the pathogenesis of SAA via deregulation of HSC quiescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A markedly decreased HSCs quiescence with apparent FZR1 downregulation in severe AA (SAA).
Fig. 2: Fzr1 haploinsufficiency leads to perturbed hematopoiesis and accelerating the cell cycle in hematopoietic stem/progenitor cells of mice.
Fig. 3: Fzr1 haploinsufficiency HSCs have a marked decrease in repopulation capacity and self-renewal capacity.
Fig. 4: Quantitative proteomic and ubiquitinomics profiling for protein targets of Fzr1.
Fig. 5: The substitution of lysine with arginine increases RUNX1 stability at 125-site.
Fig. 6: Down-regulated expression of Runx1 rescues Fzr1 haploinsufficiency phenotype.

Similar content being viewed by others

References

  1. Young NS. Aplastic anemia. N Engl J Med. 2018;379:1643–56. https://doi.org/10.1056/NEJMra1413485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia. Blood. 1996;88:1983–91.

    Article  CAS  Google Scholar 

  3. Schoettler ML, Nathan DG. The pathophysiology of acquired aplastic anemia: current concepts revisited. Hematol Oncol Clin North Am. 2018;32:581–94. https://doi.org/10.1016/j.hoc.2018.03.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302–13. https://doi.org/10.1016/j.stem.2015.01.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaschutnig P, Bogeska R, Walter D, Lier A, Huntscha S, Milsom MD. The Fanconi anemia pathway is required for efficient repair of stress-induced DNA damage in haematopoietic stem cells. Cell Cycle. 2015;14:2734–42. https://doi.org/10.1080/15384101.2015.1068474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wan L, Chen M, Cao J, Dai X, Yin Q, Zhang J, et al. The APC/C E3 ligase complex activator FZR1 restricts BRAF oncogenic function. Cancer Discov. 2017;7:424–41. https://doi.org/10.1158/2159-8290.CD-16-0647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao X, Gao S, Wu Z, Kajigaya S, Feng X, Liu Q, et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood. 2017;130:2762–73. https://doi.org/10.1182/blood-2017-08-803353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T. Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell. 2016;166:167–80. https://doi.org/10.1016/j.cell.2016.05.077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cappell SD, Mark KG, Garbett D, Pack LR, Rape M, Meyer T. EMI1 switches from being a substrate to an inhibitor of APC/C(CDH1) to start the cell cycle. Nature. 2018;558:313–7. https://doi.org/10.1038/s41586-018-0199-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ly PT, Wang H. Fzr/Cdh1 promotes the differentiation of neural stem cell lineages in drosophila. Front Cell Dev Biol. 2020;8:60 https://doi.org/10.3389/fcell.2020.00060.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mao DD, Gujar AD, Mahlokozera T, Chen I, Pan Y, Luo J, et al. A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep. 2015;11:1809–21. https://doi.org/10.1016/j.celrep.2015.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. De K, Grubb TM, Zalenski AA, Pfaff KE, Pal D, Majumder S, et al. Hyperphosphorylation of CDH1 in glioblastoma cancer stem cells attenuates APC/C(CDH1) activity and pharmacologic inhibition of APC/C(CDH1/CDC20) compromises viability. Mol Cancer Res. 2019;17:1519–30. https://doi.org/10.1158/1541-7786.MCR-18-1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Camitta BM, Thomas ED, Nathan DG, Gale RP, Kopecky KJ, Rappeport JM, et al. A prospective study of androgens and bone marrow transplantation for treatment of severe aplastic anemia. Blood. 1979;53:504–14.

    Article  CAS  Google Scholar 

  14. Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017;12:566–80. https://doi.org/10.1038/nprot.2017.003.

    Article  CAS  PubMed  Google Scholar 

  15. Killick SB, Cox CV, Marsh JC, Gordon-Smith EC, Gibson FM. Mechanisms of bone marrow progenitor cell apoptosis in aplastic anaemia and the effect of anti-thymocyte globulin: examination of the role of the Fas-Fas-L interaction. Br J Haematol. 2000;111:1164–9. https://doi.org/10.1046/j.1365-2141.2000.02485.x.

    Article  CAS  PubMed  Google Scholar 

  16. Liu H, Wu F, Jiang S. [Induction of apoptosis of CD34+ cells by serum from two patients with severe aplastic anemia]. Zhonghua Xue Ye Xue Za Zhi. 1998;19:514–7.

    CAS  PubMed  Google Scholar 

  17. Yao W, Qian W, Zhu C, Gui L, Qiu J, Zhang C. Cdh1-APC is involved in the differentiation of neural stem cells into neurons. Neuroreport. 2010;21:39–44. https://doi.org/10.1097/WNR.0b013e32833312fe.

    Article  CAS  PubMed  Google Scholar 

  18. Eguren M, Porlan E, Manchado E, Garcia-Higuera I, Canamero M, Farinas I, et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat Commun. 2013;4:2880 https://doi.org/10.1038/ncomms3880.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia-Higuera I, Manchado E, Dubus P, Canamero M, Mendez J, Moreno S, et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol. 2008;10:802–11. https://doi.org/10.1038/ncb1742.

    Article  CAS  PubMed  Google Scholar 

  20. Naoe H, Chiyoda T, Ishizawa J, Masuda K, Saya H, Kuninaka S. The APC/C activator Cdh1 regulates the G2/M transition during differentiation of placental trophoblast stem cells. Biochem Biophys Res Commun. 2013;430:757–62. https://doi.org/10.1016/j.bbrc.2012.11.075.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Ching YP, Chun AC, Jin DY. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J Biol Chem. 2003;278:12530–6. https://doi.org/10.1074/jbc.M212853200.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Ching YP, Ng RW, Jin DY. Differential expression, localization and activity of two alternatively spliced isoforms of human APC regulator CDH1. Biochem J. 2003;374:349–58. https://doi.org/10.1042/BJ20030600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holt JE, Weaver J, Jones KT. Spatial regulation of APCCdh1-induced cyclin B1 degradation maintains G2 arrest in mouse oocytes. Development. 2010;137:1297–304. https://doi.org/10.1242/dev.047555.

    Article  CAS  PubMed  Google Scholar 

  24. Seah MK, Holt JE, Garcia-Higuera I, Moreno S, Jones KT. The APC activator fizzy-related-1 (FZR1) is needed for preimplantation mouse embryo development. J Cell Sci. 2012;125:6030–7. https://doi.org/10.1242/jcs.110155.

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Huo D, Li L, Liu Z, Li Z, Xu S, et al. Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J Exp Med. 2021;218, https://doi.org/10.1084/jem.20201974.

  26. Lin FC, Karwan M, Saleh B, Hodge DL, Chan T, Boelte KC, et al. IFN-gamma causes aplastic anemia by altering hematopoietic stem/progenitor cell composition and disrupting lineage differentiation. Blood. 2014;124:3699–708. https://doi.org/10.1182/blood-2014-01-549527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lerner C, Harrison DE. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol. 1990;18:114–8.

    CAS  PubMed  Google Scholar 

  28. Ramanauskaite G, Vaitkuviene A, Kaseta V, Vitlipaite A, Liubaviciute A, Biziuleviciene G. Bone marrow-derived lineage-negative cells accelerate skin regeneration in vivo. Turk J Biol. 2018;42:205–12. https://doi.org/10.3906/biy-1711-91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaro, BW, Noh, JJ, Mascetti, VL, Demeter, J, George, B, Zukowska, M, et al. Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. Elife. 2020;9, https://doi.org/10.7554/eLife.62210.

  30. Biggs JR, Peterson LF, Zhang Y, Kraft AS, Zhang DE. AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol. 2006;26:7420–9. https://doi.org/10.1128/MCB.00597-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cai X, Gao L, Teng L, Ge J, Oo ZM, Kumar AR, et al. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell. 2015;17:165–77. https://doi.org/10.1016/j.stem.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sato T, Kim S, Selleri C, Young NS, Maciejewski JP. Measurement of secondary colony formation after 5 weeks in long-term cultures in patients with myelodysplastic syndrome. Leukemia. 1998;12:1187–94. https://doi.org/10.1038/sj.leu.2401084.

    Article  CAS  PubMed  Google Scholar 

  33. Rizzo S, Scopes J, Draycott GS, Pocock C, Foukaneli T, Rutherford TR, et al. Quiescent (5-fluorouracil-resistant) aplastic anemia hematopoietic cells in vitro. Exp Hematol. 2004;32:665–72. https://doi.org/10.1016/j.exphem.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  34. Li X, Plett PA, Yang Y, Hong P, Freie B, Srour EF, et al. Fanconi anemia type C-deficient hematopoietic stem/progenitor cells exhibit aberrant cell cycle control. Blood. 2003;102:2081–4. https://doi.org/10.1182/blood-2003-02-0536.

    Article  CAS  PubMed  Google Scholar 

  35. Barroca V, Mouthon MA, Lewandowski D, Brunet de la Grange P, Gauthier LR, Pflumio F, et al. Impaired functionality and homing of Fancg-deficient hematopoietic stem cells. Hum Mol Genet. 2012;21:121–35. https://doi.org/10.1093/hmg/ddr447.

    Article  CAS  PubMed  Google Scholar 

  36. Ishizawa J, Kuninaka S, Sugihara E, Naoe H, Kobayashi Y, Chiyoda T, et al. The cell cycle regulator Cdh1 controls the pool sizes of hematopoietic stem cells and mature lineage progenitors by protecting from genotoxic stress. Cancer Sci. 2011;102:967–74. https://doi.org/10.1111/j.1349-7006.2011.01884.x.

    Article  CAS  PubMed  Google Scholar 

  37. Ewerth D, Kreutmair S, Schmidts A, Ihorst G, Follo M, Wider D, et al. APC/C(Cdh1) regulates the balance between maintenance and differentiation of hematopoietic stem and progenitor cells. Cell Mol Life Sci. 2019;76:369–80. https://doi.org/10.1007/s00018-018-2952-3.

    Article  CAS  PubMed  Google Scholar 

  38. The I, Ruijtenberg S, Bouchet BP, Cristobal A, Prinsen MB, van Mourik T, et al. Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun. 2015;6:5906 https://doi.org/10.1038/ncomms6906.

    Article  PubMed  Google Scholar 

  39. Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47. https://doi.org/10.1056/NEJMoa1414799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–47. https://doi.org/10.1182/blood-2016-01-636381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Albitar A, Townsley D, Ma WL, De Dios I, Funari V, Young NS, et al. Higher mutation rate in patients with aplastic anemia using peripheral blood cfDNA as compared with bone marrow cells. Blood. 2016;128, https://doi.org/10.1182/blood.V128.22.3902.3902.

  42. Ichikawa M, Goyama S, Asai T, Kawazu M, Nakagawa M, Takeshita M, et al. AML1/Runx1 negatively regulates quiescent hematopoietic stem cells in adult hematopoiesis. J Immunol. 2008;180:4402–8. https://doi.org/10.4049/jimmunol.180.7.4402.

    Article  CAS  PubMed  Google Scholar 

  43. Cai X, Gaudet JJ, Mangan JK, Chen MJ, De Obaldia ME, Oo Z, et al. Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One. 2011;6:e28430 https://doi.org/10.1371/journal.pone.0028430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao X, Chen A, Yan X, Zhang Y, He F, Hayashi Y, et al. Downregulation of RUNX1/CBFbeta by MLL fusion proteins enhances hematopoietic stem cell self-renewal. Blood. 2014;123:1729–38. https://doi.org/10.1182/blood-2013-03-489575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, Littman DR, et al. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood. 2010;115:1610–20. https://doi.org/10.1182/blood-2009-07-232249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Challen GA, Goodell MA. Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol. 2010;38:403–16. https://doi.org/10.1016/j.exphem.2010.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsuzuki S, Hong D, Gupta R, Matsuo K, Seto M, Enver T. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1. PLoS Med. 2007;4:e172 https://doi.org/10.1371/journal.pmed.0040172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA. 1982;79:3843–7. https://doi.org/10.1073/pnas.79.12.3843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2017YFC1001903, 2017YFA0106700), National Science Foundation of China (81970100), China Postdoctoral Science Foundation (2019M663977), Chongqing Postdoctoral Science Foundation (4142Z2373), and Army Major Scientific Research Projects (AWS17J007).

Author information

Authors and Affiliations

Authors

Contributions

CFZ designed and performed the experiments, analyzed data, and wrote the manuscript; MK supervised the experiments conducted in the laboratories; ZLL analyzed data; XQJ, ZC, YYL, WRW, LM, contributed to the relevant discussions; JPC conceived the project; and YH conceived, designed, and supervised the experiments, analyzed results, and edited the manuscript.

Corresponding authors

Correspondence to Jieping Chen or Yu Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Kuang, M., Liu, Z. et al. Insufficiency of FZR1 disturbs HSC quiescence by inhibiting ubiquitin-dependent degradation of RUNX1 in aplastic anemia. Leukemia 36, 834–846 (2022). https://doi.org/10.1038/s41375-021-01445-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01445-5

This article is cited by

Search

Quick links