Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence

Abstract

Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and “en passant” axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE’s beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE’s beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EE prevents MK801-induced aberrant structural excitation and inhibition balance and deficit in a novel object recognition task.
Fig. 2: Selective excitation of PVINs in the FrA mimics, while inhibition of PVINs abolishes the beneficial effects of EE on MK801-induced structural excitation and inhibition imbalance and deficit in a novel object recognition task.
Fig. 3: Selective excitation of PVINs ameliorates MK801-induced dendritic spine plasticity of L2/3 PNs and synaptic deficits in L2/3 PNs and PVINs in ex vivo electrophysiology recordings.
Fig. 4: Selective excitation of PVINs mimics, while inhibition of PVINs abolishes the therapeutic effects of EE on synaptic plasticity and animal behaviors under post-MK801 treatment.
Fig. 5: Selective excitation of PVINs mimics, while inhibition of PVINs erases the therapeutic effects of EE on synaptic plasticity and animal behaviors in conditional knockout of ErBb4 mice.

Similar content being viewed by others

References

  1. Andreasen N. Symptoms, signs, and diagnosis of schizophrenia. Lancet. 1995;346:477–81.

    Article  CAS  PubMed  Google Scholar 

  2. Gogtay N, Vyas NS, Testa R, Wood SJ, Pantelis C. Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull. 2011;37:504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77:147–57.

    Article  PubMed  Google Scholar 

  4. Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience. 2013;251:90–107.

    Article  CAS  PubMed  Google Scholar 

  5. Marin O. Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med. 2016;22:1229–38.

    Article  CAS  PubMed  Google Scholar 

  6. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell. 2019;178:1387–402 e1314.

    Article  CAS  PubMed  Google Scholar 

  7. Coyle JT, Basu A, Benneyworth M, Balu D, Konopaske G. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications. Handb Exp Pharmacol. 2012;213:267–95.

    Article  CAS  Google Scholar 

  8. Malhotra MDA. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology. 1997;17:141–50.

    Article  CAS  PubMed  Google Scholar 

  9. Lahti A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995;13:9–19.

    Article  CAS  PubMed  Google Scholar 

  10. Snyder MA, Gao WJ. NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Front Cell Neurosci. 2013;7:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, et al. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharm Ther. 2010;128:419–32.

    Article  CAS  Google Scholar 

  12. Kehrer C, Maziashvili N, Dugladze T, Gloveli T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front Mol Neurosci. 2008;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ruddy RM, Chen Y, Milenkovic M, Ramsey AJ. Differential effects of NMDA receptor antagonism on spine density. Synapse. 2015;69:52–56.

    Article  CAS  PubMed  Google Scholar 

  14. Ramsey AJ, Milenkovic M, Oliveira AF, Escobedo-Lozoya Y, Seshadri S, Salahpour A, et al. Impaired NMDA receptor transmission alters striatal synapses and DISC1 protein in an age-dependent manner. Proc Natl Acad Sci USA. 2011;108:5795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xi D, Zhang W, Wang HX, Stradtman GG, Gao WJ. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex. Int J Neuropsychopharmacol. 2009;12:1395–408.

    Article  CAS  PubMed  Google Scholar 

  16. Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–83.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 2015;167:98–107.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferguson BR, Gao WJ. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits. 2018;12:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science. 2014;345:1255263.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    Article  CAS  PubMed  Google Scholar 

  21. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S. Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry. 2009;65:1006–14.

    Article  CAS  PubMed  Google Scholar 

  22. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS. Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry. 2010;167:1479–88.

    Article  PubMed  Google Scholar 

  23. Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77:1031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis DA. Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol. 2014;26:22–26.

    Article  CAS  PubMed  Google Scholar 

  26. Lewis DA, Fish KN, Arion D, Gonzalez-Burgos G. Perisomatic inhibition and cortical circuit dysfunction in schizophrenia. Curr Opin Neurobiol. 2011;21:866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cochran SM, Kennedy M, McKerchar CE, Steward LJ, Pratt JA, Morris BJ. Induction of metabolic hypofunction and neurochemical deficits after chronic intermittent exposure to phencyclidine: differential modulation by antipsychotic drugs. Neuropsychopharmacology. 2003;28:265–75.

    Article  CAS  PubMed  Google Scholar 

  28. Morrow BA, Elsworth JD, Roth RH. Repeated phencyclidine in monkeys results in loss of parvalbumin-containing axo-axonic projections in the prefrontal cortex. Psychopharmacology. 2007;192:283–90.

    Article  CAS  PubMed  Google Scholar 

  29. Nicodemus KK, Luna A, Vakkalanka R, Goldberg T, Egan M, Straub RE, et al. Further evidence for association between ErbB4 and schizophrenia and influence on cognitive intermediate phenotypes in healthy controls. Mol Psychiatry. 2006;11:1062–5.

    Article  CAS  PubMed  Google Scholar 

  30. Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ, et al. Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci. 2009;29:12255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Del Pino I, Garcia-Frigola C, Dehorter N, Brotons-Mas JR, Alvarez-Salvado E, Martinez de Lagran M, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron. 2013;79:1152–68.

    Article  PubMed  CAS  Google Scholar 

  32. Chen YJ, Zhang M, Yin DM, Wen L, Ting A, Wang P, et al. ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation. Proc Natl Acad Sci USA. 2010;107:21818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu Y, Sun XD, Hou FQ, Bi LL, Yin DM, Liu F, et al. Maintenance of GABAergic activity by neuregulin 1-ErbB4 in amygdala for fear memory. Neuron. 2014;84:835–46.

    Article  CAS  PubMed  Google Scholar 

  34. Wen L, Lu YS, Zhu XH, Li XM, Woo RS, Chen YJ, et al. Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proc Natl Acad Sci USA. 2010;107:1211–6.

    Article  CAS  PubMed  Google Scholar 

  35. Jung CK, Herms J. Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. Cereb Cortex. 2014;24:377–84.

    Article  PubMed  Google Scholar 

  36. Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.

    Article  CAS  PubMed  Google Scholar 

  37. Kempermann G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci. 2019;20:235–45.

    Article  CAS  PubMed  Google Scholar 

  38. Urakawa S, Takamoto K, Hori E, Sakai N, Ono T, Nishijo H. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats. BMC Neurosci. 2013;14:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murueta-Goyena A, Ortuzar N, Gargiulo PA, Lafuente JV, Bengoetxea H. Short-term exposure to enriched environment in adult rats restores MK-801-induced cognitive deficits and gabaergic interneuron immunoreactivity loss. Mol Neurobiol. 2018;55:26–41.

    Article  CAS  PubMed  Google Scholar 

  40. Koseki T, Mouri A, Mamiya T, Aoyama Y, Toriumi K, Suzuki S, et al. Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine-treated mice. Int J Neuropsychopharmacol. 2012;15:1489–501.

    Article  CAS  PubMed  Google Scholar 

  41. Burrows EL, McOmish CE, Buret LS, Van den Buuse M, Hannan AJ. Environmental enrichment ameliorates behavioral impairments modeling schizophrenia in mice lacking metabotropic glutamate receptor 5. Neuropsychopharmacology. 2015;40:1947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alvarez VA, Sabatini BL. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci. 2007;30:79–97.

    Article  CAS  PubMed  Google Scholar 

  43. Chen SX, Kim AN, Peters AJ, Komiyama T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat Neurosci. 2015;18:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai CSW, Adler A, Gan WB. Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex. Proc Natl Acad Sci USA. 2018;115:9306–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ng LHL, Huang Y, Han L, Chang RC, Chan YS, Lai CSW. Ketamine and selective activation of parvalbumin interneurons inhibit stress-induced dendritic spine elimination. Transl Psychiatry. 2018;8:272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cichon J, Gan WB. Branch-specific dendritic Ca(2+) spikes cause persistent synaptic plasticity. Nature. 2015;520:180–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saito T. In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc. 2006;1:1552–8.

    Article  CAS  PubMed  Google Scholar 

  48. Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462:920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grillo FW, Song S, Teles-Grilo Ruivo LM, Huang L, Gao G, Knott GW, et al. Increased axonal bouton dynamics in the aging mouse cortex. Proc Natl Acad Sci USA. 2013;110:E1514–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lai CSW, Franke TF, Gan W-B. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012;483:87–91.

    Article  CAS  PubMed  Google Scholar 

  51. Nozari M, Shabani M, Hadadi M, Atapour N. Enriched environment prevents cognitive and motor deficits associated with postnatal MK-801 treatment. Psychopharmacology. 2014;231:4361–70.

    Article  CAS  PubMed  Google Scholar 

  52. Nozari M, Shabani M, Farhangi AM, Mazhari S, Atapour N. Sex-specific restoration of MK-801-induced sensorimotor gating deficit by environmental enrichment. Neuroscience. 2015;299:28–34.

    Article  CAS  PubMed  Google Scholar 

  53. Lai CS, Franke TF, Gan WB. Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature. 2012;483:87–91.

    Article  CAS  PubMed  Google Scholar 

  54. Nakayama D, Baraki Z, Onoue K, Ikegaya Y, Matsuki N, Nomura H. Frontal association cortex is engaged in stimulus integration during associative learning. Curr Biol. 2015;25:117–23.

    Article  CAS  PubMed  Google Scholar 

  55. Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.

    Article  CAS  PubMed  Google Scholar 

  56. Chen CC, Lu J, Yang R, Ding JB, Zuo Y. Selective activation of parvalbumin interneurons prevents stress-induced synapse loss and perceptual defects. Mol Psychiatry. 2018;23:1614–25.

    Article  CAS  PubMed  Google Scholar 

  57. Gomez JL, Bonaventura J, Lesniak W, Mathews WB, Sysa-Shah P, Rodriguez LA, et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017;357:503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ilg AK, Enkel T, Bartsch D, Bahner F. Behavioral effects of acute systemic low-dose clozapine in wild-type rats: implications for the use of DREADDs in behavioral neuroscience. Front Behav Neurosci. 2018;12:173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jiang X, Wang G, Lee AJ, Stornetta RL, Zhu JJ. The organization of two new cortical interneuronal circuits. Nat Neurosci. 2013;16:210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science. 2015;350:aac9462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Yin DM, Sun XD, Bean JC, Lin TW, Sathyamurthy A, Xiong WC, et al. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci. 2013;33:19295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takuma K, Ago Y, Matsuda T. Preventive effects of an enriched environment on rodent psychiatric disorder models. J Pharm Sci. 2011;117:71–76.

    Article  CAS  Google Scholar 

  63. Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Laviola G, Macrı̀ S, Morley-Fletcher S, Adriani W. Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev. 2003;27:19–31.

    Article  PubMed  Google Scholar 

  65. Hefner K, Holmes A. Ontogeny of fear-, anxiety- and depression-related behavior across adolescence in C57BL/6J mice. Behav Brain Res. 2007;176:210–5.

    Article  PubMed  Google Scholar 

  66. Pietropaolo S, Crusio WE. Strain-dependent changes in acoustic startle response and its plasticity across adolescence in mice. Behav Genet. 2009;39:623–31.

    Article  PubMed  Google Scholar 

  67. Spanos M, Besheer J, Hodge CW. Increased sensitivity to alcohol induced changes in ERK Map kinase phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice. Behav Brain Res. 2012;230:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tuan LH, Lee LJ. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis. 2019;130:104517.

    Article  CAS  PubMed  Google Scholar 

  69. Deslauriers J, Larouche A, Sarret P, Grignon S. Combination of prenatal immune challenge and restraint stress affects prepulse inhibition and dopaminergic/GABAergic markers. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:156–64.

    Article  CAS  PubMed  Google Scholar 

  70. Paylor R, Spencer CM, Yuva-Paylor LA, Pieke-Dahl S. The use of behavioral test batteries, II: effect of test interval. Physiol Behav. 2006;87:95–102.

    Article  CAS  PubMed  Google Scholar 

  71. Shamir A, Kwon OB, Karavanova I, Vullhorst D, Leiva-Salcedo E, Janssen MJ, et al. The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J Neurosci. 2012;32:2988–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carrion RE, Demmin D, Auther AM, McLaughlin D, Olsen R, Lencz T, et al. Duration of attenuated positive and negative symptoms in individuals at clinical high risk: associations with risk of conversion to psychosis and functional outcome. J Psychiatr Res. 2016;81:95–101.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Lewis R. Should cognitive deficit be a diagnostic criterion for schizophrenia? J Psychiatry Neurosci. 2004;29:102–13.

    PubMed  PubMed Central  Google Scholar 

  75. Sponheim SR, Jung RE, Seidman LJ, Mesholam-Gately RI, Manoach DS, O’Leary DS, et al. Cognitive deficits in recent-onset and chronic schizophrenia. J Psychiatr Res. 2010;44:421–8.

    Article  CAS  PubMed  Google Scholar 

  76. Murueta-Goyena A, Morera-Herreras T, Miguelez C, Gutierrez-Ceballos A, Ugedo L, Lafuente JV, et al. Effects of adult enriched environment on cognition, hippocampal-prefrontal plasticity and NMDAR subunit expression in MK-801-induced schizophrenia model. Eur Neuropsychopharmacol. 2019;29:590–600.

    Article  CAS  PubMed  Google Scholar 

  77. Bator E, Latusz J, Wedzony K, Mackowiak M. Adolescent environmental enrichment prevents the emergence of schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia. Eur Neuropsychopharmacol. 2018;28:97–108.

    Article  CAS  PubMed  Google Scholar 

  78. Madhavadas S, Subramanian S, Kutty BM. Environmental enrichment improved cognitive deficits more in peri-adolescent than in adult rats after postnatal monosodium glutamate treatment. Physiol Int. 2017;104:271–90.

    Article  CAS  PubMed  Google Scholar 

  79. Sweet RA, Henteleff RA, Zhang W, Sampson AR, Lewis DA. Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology. 2008;34:374–89.

    Article  PubMed  Google Scholar 

  80. Tjia M, Yu X, Jammu LS, Lu J, Zuo Y. Pyramidal neurons in different cortical layers exhibit distinct dynamics and plasticity of apical dendritic spines. Front Neural Circuits. 2017;11:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hubener M, Bonhoeffer T. Neuronal plasticity: beyond the critical period. Cell. 2014;159:727–37.

    Article  PubMed  CAS  Google Scholar 

  82. Kolluri N, Sun Z, Sampson AR, Lewis DA. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry. 2005;162:1200–2.

    Article  PubMed  Google Scholar 

  83. Kawaguchi Y. Pyramidal cell subtypes and their synaptic connections in layer 5 of rat frontal cortex. Cereb Cortex. 2017;27:5755–71.

    Article  PubMed  Google Scholar 

  84. Volk DW, Lewis DA. Prefrontal cortical circuits in schizophrenia. Curr Top Behav Neurosci. 2010;4:485–508.

    Article  PubMed  Google Scholar 

  85. Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia-implications for preemptive interventions. Eur J Neurosci. 2012;35:1871–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fish KN, Hoftman GD, Sheikh W, Kitchens M, Lewis DA. Parvalbumin-containing chandelier and basket cell boutons have distinctive modes of maturation in monkey prefrontal cortex. J Neurosci. 2013;33:8352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ferguson BR, Gao WJ. Thalamic control of cognition and social behavior via regulation of gamma-aminobutyric acidergic signaling and excitation/inhibition balance in the medial prefrontal cortex. Biol Psychiatry. 2018;83:657–69.

    Article  CAS  PubMed  Google Scholar 

  88. Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med. 2015;15:146–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kennedy MB. Synaptic signaling in learning and memory. Cold Spring Harb Perspect Biol. 2013;8:a016824.

    Article  PubMed  Google Scholar 

  90. Delevich K, Jaaro-Peled H, Penzo M, Sawa A, Li B. Parvalbumin interneuron dysfunction in a thalamo-prefrontal cortical circuit in disc1 locus impairment mice. eNeuro. 2020;7:ENEURO.0496-19.2020.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477:171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fan Z, Hu H. Medial prefrontal cortex excitation/inhibition balance and schizophrenia-like behaviors regulated by thalamic inputs to interneurons. Biol Psychiatry. 2018;83:630–1.

    Article  PubMed  Google Scholar 

  93. Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504:272–6.

    Article  CAS  PubMed  Google Scholar 

  94. Parnaudeau S, Bolkan SS, Kellendonk C. The mediodorsal thalamus: an essential partner of the prefrontal cortex for cognition. Biol Psychiatry. 2018;83:648–56.

    Article  PubMed  Google Scholar 

  95. Delevich K, Tucciarone J, Huang ZJ, Li B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci. 2015;35:5743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alvarez DD, Giacomini D, Yang SM, Trinchero MF, Temprana SG, Buttner KA, et al. A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science. 2016;354:459–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the HKU Faculty Core Facility for their technical support on imaging experiments and the HKU Laboratory Animal Unit for their support on animal husbandry. The authors would like to thank Leonard W. Cheung for his support on mouse genotyping. The authors would like to thank Christ C. Wong for his support on MATLAB-based programs. This work was supported by the Hong Kong Research Grants Council (RGC/ECS 27103715 and RGC/GRF 17128816 to CSWL, RGC/ECS 21103818 and RGC/GRF 11104320 to CGL), the National Natural Science Foundation of China (NSFC/General Program 31571031 to CSWL), Shenzhen General Basic Research Program (JCYJ20190808182203591 to CGL), and the Health and Medical Research Fund (HMRF 03143096 to CSWL).

Author information

Authors and Affiliations

Authors

Contributions

YH and CSWL designed the experiments. YH performed behavioral tests, DREADDs viral infections, in vivo imaging experiments, and analyzed the data. HJ and CGL carried out the in vitro electrophysiological experiments and analyzed the data. QZ performed immunostaining experiments and analyzed PV somatic boutons imaging data. AHKF performed plasmid constructs cloning and in utero electroporation experiments. XL performed stereotaxic retrograde viral injections. YH and CSWL wrote and edited the manuscript with comments from all of the other authors.

Corresponding author

Correspondence to Cora Sau Wan Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Jiang, H., Zheng, Q. et al. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 26, 2533–2552 (2021). https://doi.org/10.1038/s41380-020-01005-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-01005-w

This article is cited by

Search

Quick links