Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short-term KRP203 and posttransplant cyclophosphamide for graft-versus-host disease prophylaxis

Abstract

Posttransplant high-dose cyclophosphamide (PTCY) has been increasingly used as graft-versus-host disease (GVHD) prophylaxis after HLA-haploidentical or matched hematopoietic stem cell transplantation (SCT). However, PTCY alone is insufficient and requires additional immunosuppressants such as calcineurin inhibitors. In the current study, we evaluated effects of a novel GVHD prophylaxis with PTCY in combination with short-term KRP203, a selective agonist of sphingosine-1-phosphate receptor 1 that regulates egress of lymphocytes from the secondary lymphoid organs (SLOs) in mice. Short-term oral administration of KRP203 alone induced apoptosis of donor T cells in the SLOs and ameliorated GVHD. Administration of KRP203 significantly preserved graft-versus-leukemia effects compared to cyclosporin. A combination of KRP203 on days 0 to +4 and PTCY on day +3 synergistically suppressed donor T-cell migration into the intestine and skin, and ameliorated GVHD more potently than PTCY alone. A combination of short-term KRP203 and PTCY is a promising novel calcineurin-free GVHD prophylaxis in HLA-haploidentical SCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Donnell PV, Luznik L, Jones RJ, Vogelsang GB, Leffell MS, Phelps M, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8:377–86.

    Article  Google Scholar 

  2. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.

    Article  CAS  Google Scholar 

  3. Luznik L, Bolanos-Meade J, Zahurak M, Chen AR, Smith BD, Brodsky R, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115:3224–30. https://doi.org/10.1182/blood-2009-11-251595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunstein CG, Fuchs EJ, Carter SL, Karanes C, Costa LJ, Wu J, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8. https://doi.org/10.1182/blood-2011-03-344853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6. https://doi.org/10.1200/JCO.2012.44.3523.

    Article  CAS  PubMed  Google Scholar 

  6. Sugita J, Kawashima N, Fujisaki T, Kakihana K, Ota S, Matsuo K, et al. HLA-haploidentical peripheral blood stem cell transplantation with post-transplant cyclophosphamide after busulfan-containing reduced-intensity conditioning. Biol Blood Marrow Transplant. 2015;21:1646–52. https://doi.org/10.1016/j.bbmt.2015.06.008.

    Article  PubMed  Google Scholar 

  7. Kanakry CG, Bolanos-Meade J, Kasamon YL, Zahurak M, Durakovic N, Furlong T, et al. Low immunosuppressive burden after HLA-matched related or unrelated BMT using posttransplantation cyclophosphamide. Blood. 2017;129:1389–93. https://doi.org/10.1182/blood-2016-09-737825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berenbaum MC, Brown IN. Prolongation of homograft survival in mice with single doses of cyclophosphamide. Nature. 1963;200:84.

    Article  CAS  Google Scholar 

  9. Mayumi H, Himeno K, Shin T, Nomoto K. Drug-induced tolerance to allografts in mice. VI. Tolerance induction in H-2-haplotype-identical strain combinations in mice. Transplantation. 1985;40:188–94. e-pub ahead of print 1985/08/01.

    Article  CAS  Google Scholar 

  10. Mayumi H, Good RA. Long-lasting skin allograft tolerance in adult mice induced across fully allogeneic (multimajor H-2 plus multiminor histocompatibility) antigen barriers by a tolerance-inducing method using cyclophosphamide. J Exp Med. 1989;169:213–38.

    Article  CAS  Google Scholar 

  11. Kanakry CG, Ganguly S, Zahurak M, Bolanos-Meade J, Thoburn C, Perkins B, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157 https://doi.org/10.1126/scitranslmed.3006960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanakry CG, Coffey DG, Towlerton AM, Vulic A, Storer BE, Chou J, et al. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight. 2016;1; https://doi.org/10.1172/jci.insight.86252.

  13. Wachsmuth LP, Patterson MT, Eckhaus MA, Venzon DJ, Gress RE, Kanakry CG. Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression. J Clin Investig. 2019;130:2357–73. https://doi.org/10.1172/JCI124218. e-pub ahead of print 2019/03/27.

    Article  Google Scholar 

  14. Ruggeri A, Labopin M, Bacigalupo A, Afanasyev B, Cornelissen JJ, Elmaagacli A, et al. Post-transplant cyclophosphamide for graft-versus-host disease prophylaxis in HLA matched sibling or matched unrelated donor transplant for patients with acute leukemia, on behalf of ALWP-EBMT. J Hematol Oncol. 2018;11:40 https://doi.org/10.1186/s13045-018-0586-4.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hingorani S. Renal complications of hematopoietic-cell transplantation. N Engl J Med. 2016;374:2256–67. https://doi.org/10.1056/NEJMra1404711.

    Article  PubMed  Google Scholar 

  16. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood. 2006;108:390–9. https://doi.org/10.1182/blood-2006-01-0329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sugiyama H, Maeda Y, Nishimori H, Yamasuji Y, Matsuoka K, Fujii N, et al. Mammalian target of rapamycin inhibitors permit regulatory T cell reconstitution and inhibit experimental chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20:183–91. https://doi.org/10.1016/j.bbmt.2013.11.018.

    Article  CAS  PubMed  Google Scholar 

  18. Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S. Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem. 2009;78:743–68. https://doi.org/10.1146/annurev.biochem.78.072407.103733.

    Article  CAS  PubMed  Google Scholar 

  19. Fujita T, Hirose R, Yoneta M, Sasaki S, Inoue K, Kiuchi M, et al. Potent immunosuppressants, 2-alkyl-2-aminopropane-1,3-diols. J Med Chem. 1996;39:4451–9. https://doi.org/10.1021/jm960391l.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277:21453–7.

    Article  CAS  Google Scholar 

  21. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–9. https://doi.org/10.1126/science.1070238.

    Article  CAS  PubMed  Google Scholar 

  22. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60. https://doi.org/10.1038/nature02284.

    Article  CAS  PubMed  Google Scholar 

  23. Kim YM, Sachs T, Asavaroengchai W, Bronson R, Sykes M. Graft-versus-host disease can be separated from graft-versus-lymphoma effects by control of lymphocyte trafficking with FTY720. J Clin Investig. 2003;111:659–69. https://doi.org/10.1172/JCI16950.

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto D, Asakura S, Matsuoka K, Sakoda Y, Koyama M, Aoyama K, et al. FTY720 enhances the activation-induced apoptosis of donor T cells and modulates graft-versus-host disease. Eur J Immunol. 2007;37:271–81. https://doi.org/10.1002/eji.200636123.

    Article  CAS  PubMed  Google Scholar 

  25. Tedesco-Silva H, Szakaly P, Shoker A, Sommerer C, Yoshimura N, Schena FP, et al. FTY720 versus mycophenolate mofetil in de novo renal transplantation: six-month results of a double-blind study. Transplantation. 2007;84:885–92. https://doi.org/10.1097/01.tp.0000281385.26500.3b.

    Article  CAS  PubMed  Google Scholar 

  26. Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MB. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem. 2013;82:637–62. https://doi.org/10.1146/annurev-biochem-062411-130916. e-pub ahead of print 2013/03/27.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu H, Takahashi M, Kaneko T, Murakami T, Hakamata Y, Kudou S, et al. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation. 2005;111:222–9. https://doi.org/10.1161/01.CIR.0000152101.41037.AB.

    Article  CAS  PubMed  Google Scholar 

  28. Khattar M, Deng R, Kahan BD, Schroder PM, Phan T, Rutzky LP, et al. Novel sphingosine-1-phosphate receptor modulator KRP203 combined with locally delivered regulatory T cells induces permanent acceptance of pancreatic islet allografts. Transplantation. 2013;95:919–27. https://doi.org/10.1097/TP.0b013e3182842396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr., Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    Article  CAS  Google Scholar 

  30. Teshima T, Ordemann R, Reddy P, Gagin S, Liu C, Cooke KR, et al. Acute graft-versus-host disease does not require alloantigen expression on host epithelium. Nat Med. 2002;8:575–81. https://doi.org/10.1038/nm0602-575.

    Article  CAS  PubMed  Google Scholar 

  31. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, et al. Origin of the lamina propria dendritic cell network. Immunity. 2009;31:513–25. https://doi.org/10.1016/j.immuni.2009.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206:3115–30. https://doi.org/10.1084/jem.20091756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fidler JM, Ku GY, Piazza D, Xu R, Jin R, Chen Z. Immunosuppressive activity of the Chinese medicinal plant Tripterygium wilfordii. III. Suppression of graft-versus-host disease in murine allogeneic bone marrow transplantation by the PG27 extract. Transplantation. 2002;74:445–57.

    Article  CAS  Google Scholar 

  34. Kanakry CG, Tsai HL, Bolanos-Meade J, Smith BD, Gojo I, Kanakry JA, et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014;124:3817–27. https://doi.org/10.1182/blood-2014-07-587477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ganguly S, Ross DB, Panoskaltsis-Mortari A, Kanakry CG, Blazar BR, Levy RB, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124:2131–41. https://doi.org/10.1182/blood-2013-10-525873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Apperley J, Niederwieser D, Huang XJ, Nagler A, Fuchs E, Szer J, et al. Haploidentical hematopoietic stem cell transplantation: a global overview comparing Asia, the European Union, and the United States. Biol Blood Marrow Transplant. 2016;22:23–26. https://doi.org/10.1016/j.bbmt.2015.11.001.

    Article  PubMed  Google Scholar 

  37. Bolanos-Meade J, Reshef R, Fraser R, Fei M, Abhyankar S, Al-Kadhimi Z, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with haemopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). Lancet Haematol. 2019;6:e132–e143. https://doi.org/10.1016/S2352-3026(18)30221-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alousi AM, Brammer JE, Saliba RM, Andersson B, Popat U, Hosing C, et al. Phase II trial of graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide after reduced-intensity busulfan/fludarabine conditioning for hematological malignancies. Biol Blood Marrow Transplant. 2015;21:906–12. https://doi.org/10.1016/j.bbmt.2015.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cieri N, Greco R, Crucitti L, Morelli M, Giglio F, Levati G, et al. Post-transplantation cyclophosphamide and sirolimus after haploidentical hematopoietic stem cell transplantation using a treosulfan-based myeloablative conditioning and peripheral blood stem cells. Biol Blood Marrow Transplant. 2015;21:1506–14. https://doi.org/10.1016/j.bbmt.2015.04.025.

    Article  CAS  PubMed  Google Scholar 

  40. Al-Homsi AS, Cole K, Bogema M, Duffner U, Williams S, Mageed A. Short course of post-transplantation cyclophosphamide and bortezomib for graft-versus-host disease prevention after allogeneic peripheral blood stem cell transplantation is feasible and yields favorable results: a phase I study. Biol Blood Marrow Transplant. 2015;21:1315–20. https://doi.org/10.1016/j.bbmt.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  41. Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69–94. https://doi.org/10.1146/annurev-immunol-020711-075011.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15. https://doi.org/10.1056/NEJMoa0907839.

    Article  CAS  PubMed  Google Scholar 

  43. Lee RS, Kuhr CS, Sale GE, Zellmer E, Hogan WJ, Storb R, et al. FTY720 does not abrogate acute graft-versus-host disease in the dog leukocyte antigen-nonidentical unrelated canine model. Transplantation. 2003;76:1155–8. https://doi.org/10.1097/01.TP.0000083891.14089.B8.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor PA, Ehrhardt MJ, Lees CJ, Tolar J, Weigel BJ, Panoskaltsis-Mortari A, et al. Insights into the mechanism of FTY720 and compatibility with regulatory T cells for the inhibition of graft-versus-host disease (GVHD). Blood. 2007;110:3480–8. https://doi.org/10.1182/blood-2007-05-087940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hla T. Physiological and pathological actions of sphingosine 1-phosphate. Semin Cell Dev Biol. 2004;15:513–20. https://doi.org/10.1016/j.semcdb.2004.05.002.

    Article  CAS  PubMed  Google Scholar 

  46. Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 2014;55:1596–608. https://doi.org/10.1194/jlr.R046300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kataoka H, Ohtsuki M, Shimano K, Mochizuki S, Oshita K, Murata M, et al. Immunosuppressive activity of FTY720, sphingosine 1-phosphate receptor agonist: II. Effect of FTY720 and FTY720-phosphate on host-versus-graft and graft-versus-host reaction in mice. Transpl Proc. 2005;37:107–9. https://doi.org/10.1016/j.transproceed.2004.12.287.

    Article  CAS  Google Scholar 

  48. White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget. 2016;7:23106–27. https://doi.org/10.18632/oncotarget.7145.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pinschewer DD, Ochsenbein AF, Odermatt B, Brinkmann V, Hengartner H, Zinkernagel RM. FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol. 2000;164:5761–70. e-pub ahead of print 2000/05/23.

    Article  CAS  Google Scholar 

  50. Sawicka E, Dubois G, Jarai G, Edwards M, Thomas M, Nicholls A, et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol. 2005;175:7973–80.

    Article  CAS  Google Scholar 

  51. Sehrawat S, Rouse BT. Anti-inflammatory effects of FTY720 against viral-induced immunopathology: role of drug-induced conversion of T cells to become Foxp3+ regulators. J Immunol. 2008;180:7636–47. https://doi.org/10.4049/jimmunol.180.11.7636. e-pub ahead of print 2008/05/21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI (17K19641 and 17H04206 to TT, 17K09945 to DH), Japan Society of Hematology Research Fund (TT), the Center of Innovation Program from JST (TT), and research grants from the Mochida Memorial Foundation for Medical and Pharmaceutical Research (DH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daigo Hashimoto or Takanori Teshima.

Ethics declarations

Conflict of interest

TT is a consultant of Novartis Pharma AG and received a research grant from Novartis Pharma AG.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, E., Hashimoto, D., Hayase, E. et al. Short-term KRP203 and posttransplant cyclophosphamide for graft-versus-host disease prophylaxis. Bone Marrow Transplant 55, 787–795 (2020). https://doi.org/10.1038/s41409-019-0733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-019-0733-8

Search

Quick links