Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication

Subjects

Abstract

Transient receptor potential melastatin 8 (TRPM8) play crucial roles in solid tumors such as prostate and breast cancers. But the role of TRPM8 in hepatocellular carcinoma (HCC) and its underlying molecular mechanisms remain largely unknown. In this study, the functional roles of TRPM8 in HCC were systematically investigated for the first time. It was found that the expression level of TRPM8 was significantly upregulated in HCC, which was positively correlated with the worse clinicopathological characteristics. Functional studies revealed that pharmacological inhibition or genetic downregulation of TRPM8 ameliorated hepatocarcinogenesis in vitro and in vivo. Mechanistically, the oncogenic role of TRPM8 in HCC was at least partially achieved by affecting mitochondrial function. TRPM8 could modulate the expression of nucleolar relative molecule-small nucleolar RNA, H/ACA box 55 (SNORA55) by inducing transformation of chromatin structure and histone modification type. These data suggest that as a bridge molecule in TRPM8-triggered HCC, SNORA55 can migrate from nucleus to mitochondria and exert oncogenic role by affecting mitochondria function through targeting ATP5A1 and ATP5B. Herein, we uncovered the potent oncogenic role of TRPM8 in HCC by inducing nuclear and mitochondrial dysfunction in a SNORA55 dependent manner, and provided a potential therapeutic target for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRPM8 was significantly upregulated in HCC tissues and cell lines.
Fig. 2: TRPM8 knockout inhibited hepatocarcinogenesis and led to morphological changes of nuclei and mitochondria in DEN-induced HCC models.
Fig. 3: Pharmacological inhibition of TRPM8 channel activity inhibited hepatocarcinogenesis in vitro and in vivo.
Fig. 4: TRPM8 knockdown downregulated the expression of nucleolar relative molecule-SNORA55 by influencing chromosome structure and histone modifications.
Fig. 5: SNORA55 can migrate from nucleus to mitochondria.
Fig. 6: SNORA55 exert oncogenic role in HCC by affecting mitochondria function.
Fig. 7: SNORA55 is required for TRPM8-triggered hepatocarcinogenesis.
Fig. 8: Graphic abstract of the study.

Similar content being viewed by others

Data availability

All relevant data are available from the authors upon reasonable request. Supplementary information is available at (journal name’s) website.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71:209–49.

    Google Scholar 

  2. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.

    Article  PubMed  Google Scholar 

  3. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  4. Qin S, Bi F, Gu S, Bai Y, Chen Z, Wang Z, et al. Donafenib versus Sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. J. Clin. Oncol. 2021;39:3002–11.

  5. Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee S-Y. Structure of the cold- and menthol-sensing ion channel TRPM8. Science. 2018;359:237–41.

  6. Kaneko Y, Szallasi Y. Transient receptor potential(TRP) channels: a clinical perspective. Br J Pharmacol. 2014;171:2474–507.

  7. Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2018;15:33–51.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Patapoutian A, Tate S, Woolf CJ. Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov. 2009;8:55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nazıroğlu M, Blum W, Jósvay K, Çiğ B, Henzi T, Oláh Z, et al. Menthol evokes Ca(2+) signals and induces oxidative stress independently of the presence of TRPM8 (menthol) receptor in cancer cells. Redox Biol. 2018;14:439–49.

    Article  PubMed  Google Scholar 

  10. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. Tissue distribution profiles of the human TRPM cation channel family. J receptor signal Transduct Res. 2006;26:159–78.

    Article  CAS  Google Scholar 

  11. Bidaux G, Flourakis M, Thebault S, Zholos A, Beck B, Gkika D, et al. Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. J Clin Investig. 2007;117:1647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pratt SJP, Lee RM, Chang KT, Hernández-Ochoa EO, Annis DA, Ory EC, et al. Mechanoactivation of NOX2-generated ROS elicits persistent TRPM8 Ca(2+) signals that are inhibited by oncogenic KRas. Proc Natl Acad Sci USA. 2020;117:26008–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Wu H, Wei Z, Wang X, Shen P, Wang S, et al. TRPM8: a potential target for cancer treatment. J Cancer Res Clin Oncol. 2016;142:1871–81.

    Article  CAS  PubMed  Google Scholar 

  14. Sun X, Seidman JS, Zhao P, Troutman TD, Spann NJ, Que X, et al. Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 2020;31:189–206.e8.

    Article  CAS  PubMed  Google Scholar 

  15. Trerè D, Derenzini M, Sirri V, Montanaro L, Grigioni W, Faa G, et al. Qualitative and quantitative analysis of AgNOR proteins in chemically induced rat liver carcinogenesis. Hepatology 1996;24:1269–73.

    Article  PubMed  Google Scholar 

  16. Shi J, Ma X, Zhang J, Zhou Y, Liu M, Huang L, et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun. 2019;10:464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu Y, Li J, Bo H, He D, Xiao M, Xiang L, et al. LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression. Oncogene 2020;39:6071–84.

    Article  CAS  PubMed  Google Scholar 

  18. Warburg O. On the origin of cancer cells. Science 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  19. Alam MM, Lal S, FitzGerald KE, Zhang L. A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors. Clin Transl Med. 2016;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 2020;585:288–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cui L, Gouw AM, LaGory EL, Guo S, Attarwala N, Tang Y, et al. Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat Biotechnol. 2021;39:357–67.

    Article  CAS  PubMed  Google Scholar 

  22. Shi Y, Lim SK, Liang Q, Iyer SV, Wang HY, Wang Z, et al. Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 2019;567:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Momcilovic M, Jones A, Bailey ST, Waldmann CM, Li R, Lee JT, et al. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 2019;575:380–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raggi C, Taddei ML, Sacco E, Navari N, Correnti M, Piombanti B, et al. Mitochondrial oxidative metabolism contributes to a cancer stem cell phenotype in cholangiocarcinoma. J Hepatol. 2021;74:1373–85.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Zhang G, Guo F, Li Q, Luo H, Shu Y, et al. Mitochondrial UQCC3 modulates hypoxia adaptation by orchestrating OXPHOS and glycolysis in hepatocellular carcinoma. Cell Rep. 2020;33:108340.

    Article  CAS  PubMed  Google Scholar 

  26. Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 2002;109:145–8.

    Article  CAS  PubMed  Google Scholar 

  27. Cao P, Yang A, Wang R, Xia X, Zhai Y, Li Y, et al. Germline duplication of SNORA18L5 increases risk for HBV-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53. Gastroenterology 2018;155:542–56.

    Article  CAS  PubMed  Google Scholar 

  28. Cui L, Nakano K, Obchoei S, Setoguchi K, Matsumoto M, Yamamoto T, et al. Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of Spectrin repeat-containing nuclear envelope 2 to promote growth and metastasis of xenograft tumors in mice. Gastroenterology 2017;153:292–306.e2.

    Article  CAS  PubMed  Google Scholar 

  29. Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, et al. Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 2014;13:216.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chu L, Su MY, Maggi LB Jr, Lu L, Mullins C, Crosby S, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Investig. 2012;122:2793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crea F, Quagliata L, Michael A, Liu HH, Frumento P, Azad AA, et al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol Oncol. 2016;10:693–703.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell 2020;183:76–93.e22.

    Article  CAS  PubMed  Google Scholar 

  33. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sánchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 2014;514:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nuevo-Tapioles C, Santacatterina F, Stamatakis K, Núñez de Arenas C, Gómez de Cedrón M, Formentini L, et al. Coordinate β-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat Commun. 2020;11:3606.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cildir G, Toubia J, Yip KH, Zhou M, Pant H, Hissaria P, et al. Genome-wide analyses of chromatin state in human mast cells reveal molecular drivers and mediators of allergic and inflammatory diseases. Immunity 2019;51:949–65.e6.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Sherrard A, Zhao B, Melak M, Trautwein J, Kleinschnitz EM, et al. GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nat Commun. 2019;10:5271.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Awad S, Kunhi M, Little GH, Bai Y, An W, Bers D, et al. Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res. 2013;41:7656–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Michod D, Bartesaghi S, Khelifi A, Bellodi C, Berliocchi L, Nicotera P, et al. Calcium-dependent dephosphorylation of the histone chaperone DAXX regulates H3.3 loading and transcription upon neuronal activation. Neuron 2012;74:122–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009;326:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kummer E, Ban N. Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol. 2021;22:307–25.

    Article  CAS  PubMed  Google Scholar 

  41. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155:1624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mottis A, Herzig S, Auwerx J. Mitocellular communication: shaping health and disease. Science 2019;366:827–32.

    Article  CAS  PubMed  Google Scholar 

  43. Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics—crosstalk inhomeostasis and stress. Trends Cell Biol. 2017;27:453–63.

    Article  CAS  PubMed  Google Scholar 

  44. Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol. 2016;17:213–26.

    Article  PubMed  Google Scholar 

  45. Vendramin R, Marine JC, Leucci E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. The. EMBO J. 2017;36:1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Long H, Zheng Q, Bo X, Xiao X, Li B. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 2019;18:119.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer. 2021;21:22–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank all of the staffs of the Medical Experimental Research Center, The Second Xiangya Hospital of Central South University, for providing the research platform. We also want to thank the Department of Pathology of The Second Xiangya Hospital for its contribution to section preparation and pathological analysis.

Funding

This work was supported by the National Natural Science Foundation of China (81272475 and 81670111), Hunan Provincial Key Research and Development Program (2019SK2242) and the platform funding of Hunan Provincial Key Laboratory of Hepatobiliary Disease Research.

Author information

Authors and Affiliations

Authors

Contributions

JF, GL and XX conceived and designed the study. JF, GL, XL, QL, KQ, QT, WQ, ZL, ZC and JZ performed the experiments. CL, ZW and ZL contributed to sample collection. XL and HY contributed to picture arrangement. JF, GL, XZ and XX drafted the manuscript. All of the authors revised the manuscript.

Corresponding author

Correspondence to Xundi Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments performed in this study involving human samples were approved by the Clinical Research Ethics Committee of the Second Xiangya Hospital, Central South University. All patients have signed informed consent in accordance with the Declaration of Helsinki guidelines. All animal experiments were approved by the Animal Care and Use Committee of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Liu, G., Zhang, X. et al. TRPM8 promotes hepatocellular carcinoma progression by inducing SNORA55 mediated nuclear-mitochondrial communication. Cancer Gene Ther 30, 738–751 (2023). https://doi.org/10.1038/s41417-022-00583-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00583-x

This article is cited by

Search

Quick links