Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neuropeptide CGRP enters the macrophage cytosol to suppress the NLRP3 inflammasome during pulmonary infection

Abstract

The NLRP3 inflammasome plays an essential role in resistance to bacterial infection. The nervous system secretes multiple neuropeptides affecting the nervous system as well as immune cells. The precise impact of the neuropeptide CGRP on NLRP3 inflammasome activation is still unclear. Here, we show that CGRP negatively regulates the antibacterial process of host cells. CGRP prevents NLRP3 inflammasome activation and reduces mature IL-1β secretion. Following NLRP3 inflammasome stimulation that triggers endosome leakage, CGRP internalized to endosomal compartments is released into the cell cytosol. Cytosolic CGRP binds directly to NLRP3 and dismantles the NLRP3-NEK7 complex, which is crucial for NLRP3 inflammasome activation. CGRP administration exacerbates bacterial infection, while the treatment with a CGRP antagonist has the opposite effect. Our study uncovers a unique role of CGRP in inhibiting inflammasome activation during infections, which might shed new light on antibacterial therapies in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180:1044–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu G, Gack MU. Distinct and orchestrated functions of RNA sensors in innate immunity. Immunity. 2020;53:26–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, et al. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol. 2016;46:897–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019;60:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 2021;22:550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156:1045–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477:596–600.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature. 2017;546:667–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma J, Zhu F, Zhao M, Shao F, Yu D, Ma J, et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. Embo j. 2021;40:e108249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation. Science. 2021;374:1076–80.

    Article  CAS  PubMed  Google Scholar 

  11. Liang JJ, Fraser IDC, Bryant CE. Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends Immunol. 2021;42:807–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhivaki D, Kagan JC. NLRP3 inflammasomes that induce antitumor immunity. Trends Immunol. 2021;42:575–89.

    Article  CAS  PubMed  Google Scholar 

  13. Andreeva L, David L, Rawson S, Shen C, Pasricha T, Pelegrin P, et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell. 2021;184:6299–6312. e6222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44:833–46.

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  17. He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530:354–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA. 2007;104:8041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019;570:338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garib FY, Rizopulu AP, Kuchmiy AA, Garib VF. Inactivation of Inflammasomes by Pathogens Regulates Inflammation. Biochem (Mosc). 2016;81:1326–39.

    Article  CAS  Google Scholar 

  21. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187:597–602.

    Article  CAS  PubMed  Google Scholar 

  22. Man SM, Kanneganti TD. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, et al. Immune system investigation using parasitic helminths. Annu Rev Immunol. 2021;39:639–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palmiter RD. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 2018;41:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blake KJ, Jiang XR, Chiu IM. Neuronal regulation of immunity in the skin and lungs. Trends Neurosci. 2019;42:537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edvinsson L, Haanes KA, Warfvinge K, Krause DN. CGRP as the target of new migraine therapies—successful translation from bench to clinic. Nat Rev Neurol. 2018;14:338–50.

    Article  CAS  PubMed  Google Scholar 

  27. De Logu F, Nassini R, Hegron A, Landini L, Jensen DD, Latorre R, et al. Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice. Nat Commun. 2022;13:646.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu Rev Pharm Toxicol. 2015;55:533–52.

    Article  CAS  Google Scholar 

  29. Durham PL. Calcitonin gene-related peptide (CGRP) and migraine. Headache. 2006;46:S3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nagashima H, Mahlakõiv T, Shih HY, Davis FP, Meylan F, Huang Y, et al. Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity. 2019;51:682–695. e686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sui, P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360(6393):eaan8546.

  32. Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour RE, et al. Calcitonin gene-related peptide negatively regulates alarmin-driven type 2 innate lymphoid cell responses. Immunity. 2019;51:709–723. e706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu H, Ding J, Porter C, Wallrapp A, Tabaka M, Ma S, et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity. 2019;51:696–708. e699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Assas MB. Anti-migraine agents from an immunological point of view. J Transl Med. 2021;19:23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 receptor in infection and inflammation. Immunity. 2017;47:15–31.

    Article  PubMed  Google Scholar 

  36. Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15:556–9.

    Article  CAS  PubMed  Google Scholar 

  37. Tapia-Abellan A, Angosto-Bazarra D, Martinez-Banaclocha H, de Torre-Minguela C, Ceron-Carrasco JP, Perez-Sanchez H, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019;15:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour REE, Nyman J, Dionne D, et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature. 2017;549:351–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motomura Y, Kobayashi T, Moro K. The neuropeptide CGRP induces bipolar syndrome in group 2 innate lymphoid cells. Immunity. 2019;51:598–600.

    Article  CAS  PubMed  Google Scholar 

  41. Waqas SFH, Hoang AC, Lin YT, Ampem G, Azegrouz H, Balogh L, et al. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J Clin Invest. 2017;127:2842–54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park S, Komatsu T, Hayashi H, Mori R, Shimokawa I. The role of neuropeptide Y in adipocyte-macrophage crosstalk during high fat diet-induced adipose inflammation and liver steatosis. Biomedicines. 2021;9:1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee B. NLRP3 activation in response to disrupted endocytic traffic. bioRxiv. 2021.09.15.460426. https://doi.org/10.1101/2021.09.15.460426.

  45. Chen J, Chen ZJ. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature. 2018;564:71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ting Li (Peking University) for technical help. This work was supported by the National Natural Science Foundation of China (81922031, 82271790, 92169113), Beijing Natural Science Foundation (7212067), National Key R&D Program of China (2019YFA0111800, 2022YFC2302900), Strategic Priority Research Programs of the Chinese Academy of Sciences (XDB29020000), Key Research Program of Frontier Sciences of Chinese Academy of Sciences (ZDBS-LY-SM025), CAS Project for Young Scientists in Basic Research (YSBR-010), Fok Ying Tung Education Foundation to PX, and Youth Innovation Promotion Association of CAS to SW.

Author information

Authors and Affiliations

Authors

Contributions

FZ, DY, and XQ designed and performed experiments and analyzed data; JM, WL, QL, CW, YL, DJ, YZ, YQ, and SW performed the experiments and analyzed the data; SW and PX initiated the study, designed and performed experiments, analyzed data, and wrote the paper.

Corresponding authors

Correspondence to Shuo Wang or Pengyan Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Yu, D., Qin, X. et al. The neuropeptide CGRP enters the macrophage cytosol to suppress the NLRP3 inflammasome during pulmonary infection. Cell Mol Immunol 20, 264–276 (2023). https://doi.org/10.1038/s41423-022-00968-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00968-w

Keywords

Search

Quick links