Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A scoping review of the methods used in patients with liver cirrhosis to assess body composition and their nutritional findings

Abstract

Background and Objectives

Body composition (BC) assessment in cirrhosis has a wide variety of methods with no consensus on the best tools for each body component in patients with Liver Cirrhosis (LC). We aimed to conduct a systematic scoping review of the most frequent body composition analysis methods and nutritional findings published in liver cirrhosis patients.

Methods

We searched for articles in PubMed, Scopus, and ISI Web of Science databases. Keywords selected the BC methods and parameters in LC.

Results

Eleven methods were found. The most frequently used were computed tomography (CT) 47.5%, Bioimpedance Analysis 35%, DXA 32.5%, and anthropometry 32.5%. Up to 15 BC parameters were reported from each method.

Conclusions

The vast heterogeneity in the results found during the qualitative analysis and imaging methods must reach a consensus to achieve a better clinical practice and improve nutritional treatment, as the physiopathology in LC compromises the nutritional status directly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Worldwide map and publication trends of selected articles about BC assessment.
Fig. 3

Similar content being viewed by others

Data availability

The data generated and analysed during this study can be found within the published article as a Supplementary Online-only file.

References

  1. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N. et al. Comparison of prognostic impact between the child-pugh score and skeletal muscle mass for patients with liver cirrhosis. Nutrients. 2017;9:595.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zenith L, Meena N, Ramadi A, Yavari M, Harvey A, Carbonneau M, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12:1920–6 e2.

    Article  PubMed  Google Scholar 

  3. Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol. 2014;20:7312–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Asp Med. 2019;65:37–55.

    Article  CAS  Google Scholar 

  5. Roman E, Garcia-Galceran C, Torrades T, Herrera S, Marin A, Donate M, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomised clinical trial. PLoS One. 2016;11:e0151652.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tapper EB, Zhang P, Garg R, Nault T, Leary K, Krishnamurthy V, et al. Body composition predicts mortality and decompensation in compensated cirrhosis patients: a prospective cohort study. JHEP Rep. 2020;2:100061.

    Article  PubMed  Google Scholar 

  7. Peng S, Plank LD, McCall JL, Gillanders LK, McIlroy K, Gane EJ. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: a comprehensive study. Am J Clin Nutr. 2007;85:1257–66.

    Article  CAS  PubMed  Google Scholar 

  8. Holland-Fischer P, Nielsen MF, Vilstrup H, Tonner-Nielsen D, Mengel A, Schmitz O, et al. Insulin sensitivity and body composition in cirrhosis: changes after TIPS. Am J Physiol Gastrointest Liver Physiol. 2010;299:G486–93.

    Article  CAS  PubMed  Google Scholar 

  9. Benjamin J, Shasthry V, Kaal CR, Anand L, Bhardwaj A, Pandit V, et al. Characterisation of body composition and definition of sarcopenia in patients with alcoholic cirrhosis: a computed tomography based study. Liver Int. 2017;37:1668–74.

    Article  PubMed  Google Scholar 

  10. Lurie Y, Webb M, Cytter-Kuint R, Shteingart S, Lederkremer GZ. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J Gastroenterol. 2015;21:11567–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabbany MN, Conjeevaram Selvakumar PK, Watt K, Lopez R, Akras Z, Zein N, et al. Prevalence of nonalcoholic steatohepatitis-associated cirrhosis in the United States: an analysis of national health and nutrition examination survey data. Am J Gastroenterol. 2017;112:581–7.

    Article  PubMed  Google Scholar 

  12. Kochanek KD, Murphy SL, Xu J, Tejada-Vera B. Division of Vital Statistics. National Vital Statistics Reports National Center for Health Statistics; 2016. https://www.cdc.gov/nchs/data/nvsr/nvsr65/nvsr65_04.pdf.

  13. Collaborators GBDC. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. Gastroenterol Hepatol. 2020;5:245–66.

    Google Scholar 

  14. Instituto_Nacional_de_Salud_Publica_(INSP). ¿De qué mueren los mexicanos? Cuernava, Morelos, Mexico: Gobierno de Mexico; 2020. https://www.insp.mx/avisos/5111-dia-muertos-mexicanos.html#:~:text=La%20mayor%C3%ADa%20de%20las%20causas,%25)%20y%20accidentes%20(5.2%25.

  15. Fabbrini E, Sullivan S, Klein S. Obesity and non-alcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–89.

    Article  CAS  PubMed  Google Scholar 

  16. Cheung K, Lee SS, Raman M. Prevalence and mechanisms of malnutrition in patients with advanced liver disease, and nutrition management strategies. Clin Gastroenterol Hepatol. 2012;10:117–25.

    Article  PubMed  Google Scholar 

  17. Belarmino G, Gonzalez MC, Sala P, Torrinhas RS, Andraus W, D’Albuquerque LAC, et al. Diagnosing sarcopenia in male patients with cirrhosis by dual-energy X-Ray absorptiometry estimates of appendicular skeletal muscle mass. JPEN J Parenter Enter Nutr. 2018;42:24–36.

    Google Scholar 

  18. Anand AC. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol. 2017;7:340–57.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hara N, Iwasa M, Sugimoto R, Mifuji-Moroka R, Yoshikawa K, Terasaka E, et al. Sarcopenia and sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern Med. 2016;55:863–70.

    Article  CAS  PubMed  Google Scholar 

  20. Nishikawa H, Enomoto H, Iwata Y, Nishimura T, Iijima H, Nishiguchi S. Clinical utility of bioimpedance analysis in liver cirrhosis. J Hepatobiliary Pancreat Sci. 2017;24:409–16.

    Article  PubMed  Google Scholar 

  21. Plauth M, Schutz T, Buckendahl DP, Kreymann G, Pirlich M, Grungreiff S, et al. Weight gain after transjugular intrahepatic portosystemic shunt is associated with improvement in body composition in malnourished patients with cirrhosis and hypermetabolism. J Hepatol. 2004;40:228–33.

    Article  PubMed  Google Scholar 

  22. Plauth M, Bernal W, Dasarathy S, Merli M, Plank LD, Schutz T, et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr. 2019;38:485–521.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rivera-Sotelo N, Vargas-Del-Angel RG, Ternovoy SK, Roldan-Valadez E. Global research trends in COVID-19 with MRI and PET/CT: a scoping review with bibliometric and network analyses. Clin Transl Imaging. 2021;9:625–39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32.

    Article  Google Scholar 

  25. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.

    Article  PubMed  Google Scholar 

  26. Guzman-Ortiz E, Bueno-Hernandez N, Melendez-Mier G, Roldan-Valadez E. Quantitative systematic review: methods used for the in vivo measurement of body composition in pregnancy. J Adv Nurs. 2021;77:537–49.

    Article  PubMed  Google Scholar 

  27. Fraser KT, Shapiro S, Willingham C, Tavarez E, Berg J, Freudenberg N. What we can learn from U.S. food policy response to crises of the last 20 years - lessons for the COVID-19 era: a scoping review. SSM Popul Health. 2022;17:100952.

    Article  PubMed  Google Scholar 

  28. Toglia J, Goverover Y. Revisiting the dynamic comprehensive model of self-awareness: a scoping review and thematic analysis of its impact 20 years later. Neuropsychol Rehabil. 2022;32:1676–725.

    Article  PubMed  Google Scholar 

  29. Fosbol MO, Zerahn B. Contemporary methods of body composition measurement. Clin Physiol Funct Imaging. 2015;35:81–97.

    Article  PubMed  Google Scholar 

  30. MacFie J, Burkinshaw L. Body composition in malignant disease. Metabolism. 1987;36:290–4.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan MY, Madden AM, Jennings G, Elia M, Fuller NJ. Two-component models are of limited value for the assessment of body composition in patients with cirrhosis. Am J Clin Nutr. 2006;84:1151–62.

    Article  CAS  PubMed  Google Scholar 

  32. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res. 2017;29:19–27.

    Article  PubMed  Google Scholar 

  33. Campillo B, Richardet JP, Scherman E, Bories PN. Evaluation of nutritional practice in hospitalised cirrhotic patients: results of a prospective study. Nutrition. 2003;19:515–21.

    Article  PubMed  Google Scholar 

  34. Figueiredo FA, Perez RM, Freitas MM, Kondo M. Comparison of three methods of nutritional assessment in liver cirrhosis: subjective global assessment, traditional nutritional parameters, and body composition analysis. J Gastroenterol. 2006;41:476–82.

    Article  PubMed  Google Scholar 

  35. Ruiz-Margain A, Macias-Rodriguez RU, Duarte-Rojo A, Rios-Torres SL, Espinosa-Cuevas A, Torre A. Malnutrition assessed through phase angle and its relation to prognosis in patients with compensated liver cirrhosis: a prospective cohort study. Dig Liver Dis. 2015;47:309–14.

    Article  PubMed  Google Scholar 

  36. Schwaiger E, Simon A, Wabel P, Schairer B, Berner C, Signorini L, et al. Bioimpedance spectroscopy for fluid status assessment in patients with decompensated liver cirrhosis: Implications for peritoneal dialysis. Sci Rep. 2020;10:2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yao J, Zhou X, Yuan L, Niu LY, Zhang A, Shi H, et al. Prognostic value of the third lumbar skeletal muscle mass index in patients with liver cirrhosis and ascites. Clin Nutr. 2020;39:1908–13.

    Article  PubMed  Google Scholar 

  38. Paternostro R, Lampichler K, Bardach C, Asenbaum U, Landler C, Bauer D, et al. The value of different CT-based methods for diagnosing low muscle mass and predicting mortality in patients with cirrhosis. Liver Int. 2019;39:2374–85.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hou L, Deng Y, Fan X, Zhao T, Cui B, Lin L, et al. A sex-stratified prognostic nomogram incorporating body compositions for long-term mortality in cirrhosis. JPEN J Parenter Enter Nutr. 2021;45:403–13.

    Article  Google Scholar 

  40. Yoo JJ, Kim SG, Kim YS, Lee B, Lee MH, Jeong SW, et al. Estimation of renal function in patients with liver cirrhosis: Impact of muscle mass and sex. J Hepatol. 2019;70:847–54.

    Article  PubMed  Google Scholar 

  41. Bello-Chavolla OY, Antonio-Villa NE, Vargas-Vazquez A, Viveros-Ruiz TL, Almeda-Valdes P, Gomez-Velasco D, et al. Metabolic Score for Visceral Fat (METS-VF), a novel estimator of intra-abdominal fat content and cardio-metabolic health. Clin Nutr. 2020;39:1613–21.

    Article  PubMed  Google Scholar 

  42. Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21:113–7.

    Article  PubMed  Google Scholar 

  43. Figueiredo FA, De Mello Perez R, Kondo M. Effect of liver cirrhosis on body composition: evidence of significant depletion even in mild disease. J Gastroenterol Hepatol. 2005;20:209–16.

    Article  PubMed  Google Scholar 

  44. Zavaglia C, Brivio M, Losacco E, Onida L. [The dietary protein contribution and hepatic encephalopathy in cirrhosis]. Recent Prog Med. 1992;83:218–23.

    CAS  Google Scholar 

  45. Lehnert ME, Clarke DD, Gibbons JG, Ward LC, Golding SM, Shepherd RW, et al. Estimation of body water compartments in cirrhosis by multiple-frequency bioelectrical-impedance analysis. Nutrition. 2001;17:31–4.

    Article  CAS  PubMed  Google Scholar 

  46. Belarmino G, Gonzalez MC, Torrinhas RS, Sala P, Andraus W, D’Albuquerque LA, et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J Hepatol. 2017;9:401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sung JH, Uojima H, Hidaka H, Tanaka Y, Wada N, Kubota K, et al. Risk factors for loss of skeletal muscle mass in patients with cirrhosis. Hepatol Res. 2019;49:550–8.

    Article  CAS  PubMed  Google Scholar 

  48. Uojima H, Sakurai S, Hidaka H, Kinbara T, Sung JH, Ichita C, et al. Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29:1402–7.

    Article  CAS  PubMed  Google Scholar 

  49. Namba M, Hiramatsu A, Aikata H, Kodama K, Uchikawa S, Ohya K, et al. Management of refractory ascites attenuates muscle mass reduction and improves survival in patients with decompensated cirrhosis. J Gastroenterol. 2020;55:217–26.

    Article  CAS  PubMed  Google Scholar 

  50. Kirpich IA, Solovieva NV, Leikhter SN, Shidakova NA, Lebedeva OV, Sidorov PI, et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 2008;42:675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015;148:30–6.

    Article  CAS  PubMed  Google Scholar 

  52. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomised studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73:712–6.

    Article  PubMed  Google Scholar 

  53. Bonefeld K, Hobolth L, Juul A, Moller S. The insulin like growth factor system in cirrhosis. Relation to changes in body composition following adrenoreceptor blockade. Growth Horm IGF Res. 2012;22:212–8.

    Article  CAS  PubMed  Google Scholar 

  54. Kobayashi K, Maruyama H, Kiyono S, Ogasawara S, Suzuki E, Ooka Y, et al. Application of transcutaneous ultrasonography for the diagnosis of muscle mass loss in patients with liver cirrhosis. J Gastroenterol. 2018;53:652–9.

    Article  PubMed  Google Scholar 

  55. Praktiknjo M, Book M, Luetkens J, Pohlmann A, Meyer C, Thomas D, et al. Fat-free muscle mass in magnetic resonance imaging predicts acute-on-chronic liver failure and survival in decompensated cirrhosis. Hepatology. 2018;67:1014–26.

    Article  CAS  PubMed  Google Scholar 

  56. Sinclair M, Chapman B, Hoermann R, Angus PW, Testro A, Scodellaro T, et al. Handgrip strength adds more prognostic value to the model for end-stage liver disease score than imaging-based measures of muscle mass in men with cirrhosis. Liver Transpl. 2019;25:1480–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

AJEF was a research fellow at the Directorate of Research in HGMEL during 2020–2022. AJEF was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT), Mexico fellowship award. This work was submitted in partial fulfilment of the requirements for the MSc degree of AJEF at the Programa de Maestria en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, AJEF, EGO, and ERV; methodology, AJEF, EGO, and ERV; software AJEF, EGO and ERV; Validation, AJEF, EGO, NBH, ERV, GMM, and SKT; formal analysis, AJEF, EGO, NBH, ERV, GMM, and SKT; investigation, AJEF, and EGO; resources, ERV; data curation AJEF and EGO; writing—original draft preparation, AJEF, EGO, NBH, ERV, GMM, and SKT; writing—review and editing, AJEF, EGO, NBH, ERV, GMM, and SKT; visualisation, AJEF, EGO, NBH, ERV, GMM, and SKT; supervision, ERV; project administration, ERV; funding acquisition, NA. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nallely Bueno-Hernandez or Ernesto Roldan-Valadez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Because this study is a scoping review of publicly available information from medical literature, ethical approval was not required for this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa-Flores, AJ., Guzman-Ortiz, E., Melendez-Mier, G. et al. A scoping review of the methods used in patients with liver cirrhosis to assess body composition and their nutritional findings. Eur J Clin Nutr 77, 845–854 (2023). https://doi.org/10.1038/s41430-023-01287-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-023-01287-7

Search

Quick links