Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-function relationship in glaucoma: Optical coherence tomography en face imaging vs. red-free fundus photography

Abstract

Background/Objectives

To analyse retinal nerve fibre layer (RNFL) defect measurements obtained from red-free fundus photography and optical coherence tomography (OCT) en face imaging, respectively, and to compare them for the strength of the structure–function association.

Subjects/Methods

Two hundred and fifty-six glaucomatous eyes of 256 patients with localized RNFL defect on red-free fundus photography were enrolled. A subgroup analysis included 81 highly myopic eyes (≤ –6.0 dioptres). Angular width of RNFL defect was compared between red-free fundus photography (i.e., red-free RNFL defect) and OCT en face imaging (i.e., en face RNFL defect). The correlation between angular width of each RNFL defect and functional outcomes, reported as mean deviation (MD) and pattern standard deviation (PSD), were assessed and compared.

Results

The angular width of en face RNFL defect was measured smaller than that of red-free RNFL defect in 91.0% eyes (mean difference, 19.98°). The association of en face RNFL defect with MD and PSD was stronger (R2 = 0.311 and R2 = 0.372, respectively) than that of red-free RNFL defect with MD and PSD (R2 = 0.162 and R2 = 0.137, respectively) (P < 0.05 for all). Especially in highly myopic eyes, the association of en face RNFL defect with MD and PSD was much stronger (R2 = 0.503 and R2 = 0.555, respectively) than that of red-free RNFL defect with MD and PSD (R2 = 0.216 and R2 = 0.166, respectively) (P < 0.05 for all).

Conclusions

En face RNFL defect showed a higher correlation with severity of visual field loss than did red-free RNFL defect. The same dynamic was observed for highly myopic eyes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Angular width of retinal nerve fibre layer (RNFL) defect on red-free fundus photography and optical coherence tomography (OCT) en face imaging.
Fig. 2: Scatter plots of the values of visual field (VF) parameters against angular width of retinal nerve fibre layer (RNFL) defect.
Fig. 3: Representative cases of retinal nerve fibre layer (RNFL) angle on red-free fundus photography and OCT en face imaging in glaucoma patients.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol (Chic, Ill: 1960). 1984;102:1766–71.

    Article  CAS  Google Scholar 

  2. Jonas JB, Dichtl A. Evaluation of the retinal nerve fiber layer. Surv Ophthalmol. 1996;40:369–78.

    Article  CAS  PubMed  Google Scholar 

  3. Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol (Chic, Ill: 1960). 1982;100:807–14.

    Article  CAS  Google Scholar 

  4. Quigley HA. Examination of the retinal nerve fiber layer in the recognition of early glaucoma damage. Trans Am Ophthalmol Soc. 1986;84:920–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim JM, Park KH, Kim SJ, Jang HJ, Noh E, Kim MJ, et al. Comparison of localized retinal nerve fiber layer defects in highly myopic, myopic, and non-myopic patients with normal-tension glaucoma: a retrospective cross-sectional study. BMC Ophthalmol. 2013;13:67.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    Article  CAS  PubMed  Google Scholar 

  7. Alluwimi MS, Swanson WH, Malinovsky VE, King BJ. Customizing Perimetric Locations Based on En Face Images of Retinal Nerve Fiber Bundles With Glaucomatous Damage. Transl Vis Sci Technol. 2018;7:5.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hood DC, Fortune B, Mavrommatis MA, Reynaud J, Ramachandran R, Ritch R, et al. Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps. Investig Ophthalmol Vis Sci. 2015;56:6208–16.

    Article  Google Scholar 

  9. Jung JH, Park JH, Yoo C, Kim YY. Localized Retinal Nerve Fiber Layer Defects in Red-free Photographs Versus En Face Structural Optical Coherence Tomography Images. J Glaucoma. 2018;27:269–74.

    Article  PubMed  Google Scholar 

  10. Park JH, Yoo C, Kim YY. Localized Retinal Nerve Fiber Layer Defect Location Among Red-free Fundus Photographs, En Face Structural Images, and Cirrus HD-OCT Maps. J Glaucoma. 2019;28:1054–60.

    Article  PubMed  Google Scholar 

  11. Ji MJ, Park JH, Yoo C, Kim YY. Comparison of the Progression of Localized Retinal Nerve Fiber Layer Defects in Red-free Fundus Photograph, En Face Structural Image, and OCT Angiography Image. J Glaucoma. 2020;29:698–703.

    Article  PubMed  Google Scholar 

  12. Lim AB, Park JH, Jung JH, Yoo C, Kim YY. Characteristics of diffuse retinal nerve fiber layer defects in red-free photographs as observed in optical coherence tomography en face images. BMC Ophthalmol. 2020;20:16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim YK, Choi HJ, Jeoung JW, Park KH, Kim DM. Five-year incidence of primary open-angle glaucoma and rate of progression in health center-based Korean population: the Gangnam Eye Study. PloS one. 2014;9:e114058.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Prum BE, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern® Guidelines. Ophthalmology. 2016;123:P41–P111.

    Article  PubMed  Google Scholar 

  15. Hoyt WF, Frisén L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Investigative Ophthalmol. 1973;12:814–29.

    CAS  Google Scholar 

  16. Nukada M, Hangai M, Mori S, Nakano N, Nakanishi H, Ohashi-Ikeda H, et al. Detection of localized retinal nerve fiber layer defects in glaucoma using enhanced spectral-domain optical coherence tomography. Ophthalmology. 2011;118:1038–48.

    Article  PubMed  Google Scholar 

  17. Kimura Y, Hangai M, Morooka S, Takayama K, Nakano N, Nukada M, et al. Retinal nerve fiber layer defects in highly myopic eyes with early glaucoma. Investigative Ophthalmol Vis Sci. 2012;53:6472–8.

    Article  Google Scholar 

  18. Rosenfeld PJ, Durbin MK, Roisman L, Zheng F, Miller A, Robbins G, et al. ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects. Dev Ophthalmol. 2016;56:18–29.

    Article  PubMed  Google Scholar 

  19. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article  CAS  PubMed  Google Scholar 

  20. Malik R, Swanson WH, Garway-Heath DF. ‘Structure-function relationship’ in glaucoma: past thinking and current concepts. Clin Exp Ophthalmol. 2012;40:369–80.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bizios D, Heijl A, Bengtsson B. Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics. BMC Ophthalmol. 2011;11:20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol (Chic, Ill: 1960). 2002;120:1268–79.

    Article  Google Scholar 

  23. Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I. Results of the European glaucoma prevention study. Ophthalmology. 2005;112:366–75.

    Article  PubMed  Google Scholar 

  24. Garway-Heath DF, Holder GE, Fitzke FW, Hitchings RA. Relationship between electrophysiological, psychophysical, and anatomical measurements in glaucoma. Investigative Ophthalmol Vis Sci. 2002;43:2213–20.

    Google Scholar 

  25. El Beltagi TA, Bowd C, Boden C, Amini P, Sample PA, Zangwill LM, et al. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes. Ophthalmology. 2003;110:2185–91.

    Article  PubMed  Google Scholar 

  26. Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, García-Feijoo J. Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Investigative Ophthalmol Vis Sci. 2008;49:3018–25.

    Article  Google Scholar 

  27. Aptel F, Sayous R, Fortoul V, Beccat S, Denis P. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry. Am J Ophthalmol. 2010;150:825–33.

    Article  PubMed  Google Scholar 

  28. Leite MT, Zangwill LM, Weinreb RN, Rao HL, Alencar LM, Medeiros FA. Structure-function relationships using the Cirrus spectral domain optical coherence tomograph and standard automated perimetry. J Glaucoma. 2012;21:49–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Raza AS, Cho J, de Moraes CG, Wang M, Zhang X, Kardon RH, et al. Retinal ganglion cell layer thickness and local visual field sensitivity in glaucoma. Arch Ophthalmol (Chic, Ill: 1960). 2011;129:1529–36.

    Article  Google Scholar 

  30. Rao HL, Zangwill LM, Weinreb RN, Leite MT, Sample PA, Medeiros FA. Structure-function relationship in glaucoma using spectral-domain optical coherence tomography. Arch Ophthalmol (Chic, Ill: 1960). 2011;129:864–71.

    Article  Google Scholar 

  31. Sommer A, D’Anna SA, Kues HA, George T. High-resolution photography of the retinal nerve fiber layer. Am J Ophthalmol. 1983;96:535–9.

    Article  CAS  PubMed  Google Scholar 

  32. Vermeer KA, van der Schoot J, Lemij HG, de Boer JF. RPE-normalized RNFL attenuation coefficient maps derived from volumetric OCT imaging for glaucoma assessment. Investigative Ophthalmol Vis Sci. 2012;53:6102–8.

    Article  Google Scholar 

  33. Miura N, Omodaka K, Kimura K, Matsumoto A, Kikawa T, Takahashi S, et al. Evaluation of retinal nerve fiber layer defect using wide-field en-face swept-source OCT images by applying the inner limiting membrane flattening. PloS one. 2017;12:e0185573.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sakamoto M, Mori S, Ueda K, Kurimoto T, Kusuhara S, Yamada-Nakanishi Y, et al. En Face Slab Images Visualize Nerve Fibers With Residual Visual Sensitivity in Significantly Thinned Macular Areas of Advanced Glaucomatous Eyes. Investigative Ophthalmol Vis Sci. 2019;60:2811–21.

    Article  CAS  Google Scholar 

  35. Christopher M, Bowd C, Belghith A, Goldbaum MH, Weinreb RN, Fazio MA, et al. Deep Learning Approaches Predict Glaucomatous Visual Field Damage from OCT Optic Nerve Head En Face Images and Retinal Nerve Fiber Layer Thickness Maps. Ophthalmology. 2020;127:346–56.

    Article  PubMed  Google Scholar 

  36. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, et al. Retinal nerve fiber layer measurements in myopia: An optical coherence tomography study. Investigative Ophthalmol Vis Sci. 2006;47:5171–6.

    Article  Google Scholar 

  37. Mwanza JC, Durbin MK, Budenz DL, Sayyad FE, Chang RT, Neelakantan A, et al. Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head. Ophthalmology. 2012;119:1151–8.

    Article  PubMed  Google Scholar 

  38. Schuman JS. Optical Coherence Tomography in High Myopia. JAMA Ophthalmol. 2016;134:1040–40.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Leung CK, Yu M, Weinreb RN, Mak HK, Lai G, Ye C, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Investigative Ophthalmol Vis Sci. 2012;53:7194–200.

    Article  Google Scholar 

  40. Yamashita T, Kii Y, Tanaka M, Yoshinaga W, Yamashita T, Nakao K, et al. Relationship between supernormal sectors of retinal nerve fibre layer and axial length in normal eyes. Acta Ophthalmol. 2014;92:e481–7.

    Article  PubMed  Google Scholar 

  41. Leung CK, Chong KK, Chan WM, Yiu CK, Tso MY, Woo J, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Investigative Ophthalmol Vis Sci. 2005;46:3702–11.

    Article  Google Scholar 

  42. Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog Retin Eye Res. 2007;26:688–710.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harwerth RS, Vilupuru AS, Rangaswamy NV, Smith EL 3rd. The relationship between nerve fiber layer and perimetry measurements. Investigative Ophthalmol Vis Sci. 2007;48:763–73.

    Article  Google Scholar 

  44. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Investigative Ophthalmol Vis Sci. 2000;41:1774–82.

    CAS  Google Scholar 

  45. Swanson WH, Felius J, Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two-stage neural model. Investigative Ophthalmol Vis Sci. 2004;45:466–72.

    Article  Google Scholar 

  46. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol (Chic, Ill: 1960). 2002;120:701–13.

    Article  Google Scholar 

  47. Saunders LJ, Russell RA, Crabb DP. The Coefficient of Determination: What Determines a Useful R 2 Statistic? Investigative Ophthalmol Vis Sci. 2012;53:6830–2.

    Article  Google Scholar 

Download references

Funding

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A1058426).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, methodology: HJC Data curation, formal analysis, methodology: EB Writing original draft: EB Visualisation: EB Writing-review & editing: EB, HJC.

Corresponding author

Correspondence to Hyuk Jin Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, E., Choi, H.J. Structure-function relationship in glaucoma: Optical coherence tomography en face imaging vs. red-free fundus photography. Eye 37, 2969–2976 (2023). https://doi.org/10.1038/s41433-023-02452-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02452-9

Search

Quick links