Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Insights and opportunities at the crossroads of cancer and neuroscience

Abstract

The biological and pathological importance of mutual interactions between the nervous system and cancer have become increasingly evident. The emerging field of cancer neuroscience aims to decipher key signalling factors of cancer–nervous system crosstalk and to exploit these modulators as targets for improved anticancer therapies. Here we discuss the key achievements in cancer neuroscience research, inspire further interactions on a variety of related research topics, and provide a roadmap for future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neural input drives tumour progression.
Fig. 2: Reciprocal interactions between cancer and the nervous system.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faulkner, S., Jobling, P., March, B., Jiang, C. C. & Hondermarck, H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 9, 702–710 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Reiche, E. M., Nunes, S. O. & Morimoto, H. K. Stress, depression, the immune system and cancer. Lancet Oncol. 5, 617–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Li, L. & Hanahan, D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 153, 86–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell 33, 736–751 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Latario, C. J. et al. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol. Biol. Cell 31, 1259–1272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Winkler, F. & Wick, W. Harmful networks in the brain and beyond. Science 359, 1100–1101 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Weil, S. et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19, 1316–1326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jung, E. et al. Tumor cell plasticity, heterogeneity and resistance in crucial microenvironmental niches in glioma. Nat. Commun. 12, 1014 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung, E. et al. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37, 6837–6850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  PubMed  Google Scholar 

  19. Magnon, C. Role of the autonomic nervous system in tumorigenesis and metastasis. Mol. Cell Oncol. 2, e975643 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90 e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Gillespie, S. & Monje, M. The neural regulation of cancer. Annu. Rev. Cancer Biol. 4, 371–390 (2020).

    Article  Google Scholar 

  23. Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pundavela, J. et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9, 1626–1635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, E. V. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66, 10357–10364 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Azuma, H. et al. Gamma-aminobutyric acid as a promoting factor of cancer metastasis; induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Res. 63, 8090–8096 (2003).

    CAS  PubMed  Google Scholar 

  27. Bapat, A. A., Hostetter, G., Von Hoff, D. D. & Han, H. Perineural invasion and associated pain in pancreatic cancer. Nat. Rev. Cancer 11, 695–707 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, S. H. et al. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 9, 1–21 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. He, S. et al. GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc. Natl Acad. Sci. USA 111, E2008–E2017 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirth, M. et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology 159, 665–681 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Deborde, S. et al. Schwann cells induce cancer cell dispersion and invasion. J. Clin. Invest. 126, 1538–1554 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cavel, O. et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 72, 5733–5743 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Selvaraj, D. et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780–796 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537–5552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubeykovskaya, Z. et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat. Commun. 7, 10517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qin, E. Y. et al. Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell 170, 845–859 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan, Y. et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594, 277–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, P. et al. Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature 606, 550–556 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Zhao, C. M. et al. Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saloman, J. L. et al. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proc. Natl Acad. Sci. USA 113, 3078–3083 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peterson, S. C. et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell 16, 400–412 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dobrenis, K., Gauthier, L. R., Barroca, V. & Magnon, C. Granulocyte colony-stimulating factor off-target effect on nerve outgrowth promotes prostate cancer development. Int. J. Cancer 136, 982–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Stopczynski, R. E. et al. Neuroplastic changes occur early in the development of pancreatic ductal adenocarcinoma. Cancer Res. 74, 1718–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pundavela, J. et al. ProNGF correlates with Gleason score and is a potential driver of nerve infiltration in prostate cancer. Am. J. Pathol. 184, 3156–3162 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Mehlen, P., Delloye-Bourgeois, C. & Chedotal, A. Novel roles for Slits and Netrins: axon guidance cues as anticancer targets? Nat. Rev. Cancer 11, 188–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Mauffrey, P. et al. Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Amit, M. et al. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 578, 449–454 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Huberfeld, G. & Vecht, C. J. Seizures and gliomas—towards a single therapeutic approach. Nat. Rev. Neurol. 12, 204–216 (2016).

    Article  PubMed  Google Scholar 

  54. Yu, K. et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578, 166–171 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Jain, R. et al. Visualizing murine breast and melanoma tumor microenvironment using intravital multiphoton microscopy. STAR Protoc. 2, 100722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Entenberg, D. et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat. Methods 15, 73–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Rakhilin, N. et al. An intravital window to image the colon in real time. Nat. Commun. 10, 5647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Richardson, D. S. et al. Tissue clearing. Nat. Rev. Methods Primers 1, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ueda, H. R. et al. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 21, 61–79 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Almagro, J., Messal, H. A., Zaw Thin, M., van Rheenen, J. & Behrens, A. Tissue clearing to examine tumour complexity in three dimensions. Nat. Rev. Cancer 21, 718–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Kubota, S. I. et al. Whole-body profiling of cancer metastasis with single-cell resolution. Cell Rep. 20, 236–250 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Pan, C. et al. Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell 179, 1661–1676 e19 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Demir, I. E. et al. Clinically actionable strategies for studying neural influences in cancer. Cancer Cell 38, 11–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Demir, I. E. et al. Future directions in preclinical and translational cancer neuroscience research. Nat. Cancer 1, 1027–1031 (2021).

    Article  PubMed  Google Scholar 

  67. Coarfa, C. et al. Influence of the neural microenvironment on prostate cancer. Prostate 78, 128–139 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Peixoto, R., Pereira, M. L. & Oliveira, M. Beta-blockers and cancer: where are we?. Pharmaceuticals (Basel) 13, 105 (2020).

    Article  CAS  Google Scholar 

  69. Lei, Y. et al. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nat. Commun. 8, 15130 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schneider, M. et al. Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro. Oncol 23, 1885–1897 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jung, E. et al. Emerging intersections between neuroscience and glioma biology. Nat. Neurosci. 22, 1951–1960 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.W. is supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 1389) and by intramural funding from Heidelberg University (Cancer Neuroscience Initiative). C.P. is funded by the Deutsche Forschungsgemeinschaft (grant no. 451894423). Figures 1 and 2 are created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Winkler.

Ethics declarations

Competing interests

F.W. is one of the inventors of patent WO 2017/020982A1 ‘Agents for use in the treatment of glioma’. This patent covers new treatment strategies that all target the formation and function of TMs in glioma. F.W. reports research collaboration with DC Europa Limited, Glaxo Smith Kline, Genentech and Boehringer, and is co-founder of Divide&Conquer. C.P. is one of the inventors of a patent on whole-body clearing and imaging-related technologies.

Peer review

Peer review information

Nature Cell Biology thanks Richard Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Winkler, F. Insights and opportunities at the crossroads of cancer and neuroscience. Nat Cell Biol 24, 1454–1460 (2022). https://doi.org/10.1038/s41556-022-00978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-022-00978-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer