Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-surface synthesis and characterization of individual polyacetylene chains

Abstract

Polyacetylene (PA) comprises one-dimensional chains of sp2-hybridized carbon atoms that may take a cis or trans configuration. Owing to its simple chemical structure and exceptional electronic properties, PA is an ideal system to understand the nature of charge transport in conducting polymers. Here, we report the on-surface synthesis of both cis- and trans-PA chains and their atomic-scale characterization. The structure of individual PA chains was imaged by non-contact atomic force microscopy, which confirmed the formation of PA by resolving single chemical bond units. Angle-resolved photoemission spectroscopy suggests a semiconductor-to-metal transition through doping-induced suppression of the Peierls bond alternation of trans-PA on Cu(110). Electronically decoupled trans-PAs exhibit a band gap of 2.4 eV following copper oxide intercalation. Our study provides a platform for studying individual PA chains in real and reciprocal space, which may be further extended to study the intrinsic properties of non-linear excitons in conducting polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A schematic illustration of the on-surface fabrication of PA.
Fig. 2: The structural properties of cis-PA.
Fig. 3: The structural properties of trans-PA.
Fig. 4: The band structure of trans-PA on Cu(110).
Fig. 5: The electronic properties of decoupled trans-PA.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The tight-binding calculations were performed using a custom-made code on the WaveMetrics IGOR Pro platform. Details of this tight-binding code can be obtained from the corresponding author on reasonable request.

References

  1. Chiang, C. K. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  CAS  Google Scholar 

  2. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977).

  3. Hsu, S. L., Signorelli, A. J., Pez, G. P. & Baughman, R. H. Highly conducting iodine derivatives of polyacetylene: raman, XPS and X-ray diffraction studies. J. Chem. Phys. 69, 106–111 (1978).

    Article  CAS  Google Scholar 

  4. Heeger, A. J. Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 73, 681–700 (2001).

    Article  CAS  Google Scholar 

  5. Chiang, C. K. et al. Conducting polymers: halogen doped polyacetylene. J. Chem. Phys. 69, 5098–5104 (1978).

    Article  CAS  Google Scholar 

  6. Fincher, C. R. et al. Electronic structure of polyacetylene: optical and infrared studies of undoped semiconducting (CH)x and heavily doped metallic (CH)x. Phys. Rev. B 20, 1589–1602 (1979).

    Article  CAS  Google Scholar 

  7. Park, Y.-W., Heeger, A. J., Druy, M. A. & MacDiarmid, A. G. Electrical transport in doped polyacetylene. J. Chem. Phys. 73, 946–957 (1980).

    Article  CAS  Google Scholar 

  8. Ikehata, S. et al. Solitons in polyacetylene: magnetic susceptibility. Phys. Rev. Lett. 45, 1123–1126 (1980).

    Article  CAS  Google Scholar 

  9. Harada, I., Furukawa, Y., Tasumi, M., Shirakawa, H. & Ikeda, S. Spectroscopic studies on doped polyacetylene and β‐carotene. J. Chem. Phys. 73, 4746–4757 (1980).

    Article  CAS  Google Scholar 

  10. Ritsko, J. J. Core excitons in polyacetylene: evidence for a closed-gap metallic state. Phys. Rev. Lett. 46, 849–852 (1981).

    Article  CAS  Google Scholar 

  11. Park, Y. W., Han, W. K., Choi, C. H. & Shirakawa, H. Metallic nature of heavily doped polyacetylene derivatives: thermopower. Phys. Rev. B 30, 5847–5851 (1984).

    Article  CAS  Google Scholar 

  12. Park, Y. W. et al. Electrical conductivity of highly-oriented-polyacetylene. Solid State Commun. 65, 147–150 (1988).

    Article  CAS  Google Scholar 

  13. Park, Y. W., Yoon, C. O., Na, B. C., Shirakawa, H. & Akagi, K. Metallic properties of transition metal halides doped polyacetylene: the soliton liquid state. Synth. Met. 41, 27–32 (1991).

    Article  CAS  Google Scholar 

  14. Lavarda, F. C., Galvo, D. S. & Laks, B. Extended states in finite one-dimensional, disordered, highly doped, ItransR-polyacetylene chains. Phys. Rev. B 45, 3107–3110 (1992).

    Article  CAS  Google Scholar 

  15. Shirakawa, H. The discovery of polyacetylene—the dawning of an era of conducting polymers. Curr. Appl. Phys. 1, 281–286 (2001).

    Article  Google Scholar 

  16. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J. Phys. Chem. B 105, 8475–8491 (2001).

    Article  CAS  Google Scholar 

  17. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  CAS  Google Scholar 

  18. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W.-P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    Article  CAS  Google Scholar 

  19. Mele, E. J. & Rice, M. J. Semiconductor-metal transition in doped polyacetylene. Phys. Rev. B 23, 5397–5412 (1981).

    Article  CAS  Google Scholar 

  20. Lavarda, F. C., dos Santos, M. C., Galvão, D. S. & Laks, B. Insulator-to-metal transition in polythiophene. Phys. Rev. B 49, 979–983 (1994).

    Article  CAS  Google Scholar 

  21. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  22. Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

    Article  CAS  Google Scholar 

  23. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  Google Scholar 

  24. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  Google Scholar 

  25. Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017).

    Article  Google Scholar 

  26. Zhang, Y.-Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

    Article  Google Scholar 

  27. Liu, J. et al. Lattice-directed formation of covalent and organometallic molecular wires by terminal alkynes on Ag surfaces. ACS Nano 9, 6305–6314 (2015).

    Article  CAS  Google Scholar 

  28. Sun, Q. et al. Bottom-Up synthesis of metalated carbyne. J. Am. Chem. Soc. 138, 1106–1109 (2016).

    Article  CAS  Google Scholar 

  29. Zhou, H. et al. Direct visualization of surface-assisted two-dimensional diyne polycyclotrimerization. J. Am. Chem. Soc. 136, 5567–5570 (2014).

    Article  CAS  Google Scholar 

  30. Liu, J., Ruffieux, P., Feng, X., Müllen, K. & Fasel, R. Cyclotrimerization of arylalkynes on Au(111). Chem Commun. 50, 11200–11203 (2014).

    Article  CAS  Google Scholar 

  31. Lomas, J. R., Baddeley, C. J., Tikhov, M. S. & Lambert, R. M. Ethyne cyclization to benzene over Cu(110). Langmuir 11, 3048–3053 (1995).

    Article  CAS  Google Scholar 

  32. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  33. Barborini, M. & Guidoni, L. Ground state geometries of polyacetylene chains from many-particle quantum mechanics. J. Chem. Theory Comput. 11, 4109–4118 (2015).

    Article  CAS  Google Scholar 

  34. Natta, G., Mazzanti, G. & Corradini, P. in Stereoregular Polymers and Stereospecific Polymerizations 463–465 (Pergamon, 1967); https://doi.org/10.1016/B978-1-4831-9883-5.50084-2

    Chapter  Google Scholar 

  35. Hudson, S. B. Polyacetylene: myth and reality. Materials 11, 242–261 (2018).

    Article  Google Scholar 

  36. Chien, J. C. W., Warakomski, J. M., Karasz, F. E., Chia, W. L. & Lillya, C. P. Homogeneous doping and semiconductor-to-“metal” transition in polyacetylene. Phys. Rev. B 28, 6937–6952 (1983).

    Article  CAS  Google Scholar 

  37. Dunlap, D. H., Wu, H.-L. & Phillips, P. W. Absence of localization in a random-dimer model. Phys. Rev. Lett. 65, 88–91 (1990).

    Article  CAS  Google Scholar 

  38. Ferretti, A. et al. Ab initio complex band structure of conjugated polymers: effects of hydrid density functional theory and GW schemes. Phys. Rev. B 85, 235105 (2012).

    Article  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  41. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation, the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 785219 (Graphene Flagship Core 2), and the Office of Naval Research BRC programme. W.X. acknowledges financial support from the National Natural Science Foundation of China (grant nos. 21473123, 21622307, 21790351). S.W. acknowledges financial support from Thousand Young Talent Program and National Natural Science Foundation of China (grant nos. 11874258, 11790313). C.A.P. acknowledges the Swiss National Supercomputing Centre (CSCS) under project ID s746.

Author information

Authors and Affiliations

Authors

Contributions

W.X., R.F. and P.R. conceived the experiments. Q.S., S.W. and L.C performed the STM experiments. S.W., B.Y., C.L. and X.Y. performed nc-AFM and STS measurements. R.W., S.W. and O.G. performed the ARPES experiments. Q.S., O.G. and C.A.P. performed the calculations. H.J., Q.S., X.Y. and J.Z. performed the XPS experiments. S.W., Q.S., R.F. and W.X. wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Roman Fasel or Wei Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Sun, Q., Gröning, O. et al. On-surface synthesis and characterization of individual polyacetylene chains. Nat. Chem. 11, 924–930 (2019). https://doi.org/10.1038/s41557-019-0316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0316-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing