Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A short peptide synthon for liquid–liquid phase separation

Abstract

Liquid–liquid phase separation of disordered proteins has emerged as a ubiquitous route to membraneless compartments in living cells, and similar coacervates may have played a role when the first cells formed. However, existing coacervates are typically made of multiple macromolecular components, and designing short peptide analogues capable of self-coacervation has proven difficult. Here we present a short peptide synthon for phase separation, made of only two dipeptide stickers linked via a flexible, hydrophilic spacer. These small-molecule compounds self-coacervate into micrometre-sized liquid droplets at sub-millimolar concentrations, which retain up to 75 wt% water. The design is general and we derive guidelines for the required sticker hydrophobicity and spacer polarity. To illustrate their potential as protocells, we create a disulfide-linked derivative that undergoes reversible compartmentalization controlled by redox chemistry. The resulting coacervates sequester and melt nucleic acids, and act as microreactors that catalyse two different anabolic reactions yielding molecules of increasing complexity. This provides a stepping stone for new coacervate-based protocells made of single peptide species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liquid–liquid phase separation of cystamine-linked phenylalanine dipeptides.
Fig. 2: Reversible reduction and oxidation of FFssFF.
Fig. 3: Partitioning of guest molecules in FFssFF coacervates.
Fig. 4: Enhanced rates of addition reactions in FFssFF coacervates.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and in the Supplementary Information and Data files. Source data are provided with this paper.

References

  1. Koshland, D. E. Jr. Special essay: The seven pillars of life. Science 295, 2215–2216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Yewdall, N. A., Mason, A. F. & van Hest, J. C. M. The hallmarks of living systems: towards creating artificial cells. Interface Focus 8, 20180023 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mann, S. Systems of creation: the emergence of life from nonliving matter. Acc. Chem. Res. 45, 2131–2141 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Cronin, L. & Walker, S. I. Beyond prebiotic chemistry. Science 352, 1174–1175 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Dzieciol, A. J. & Mann, S. Designs for life: protocell models in the laboratory. Chem. Soc. Rev. 41, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Poudyal, R. R., Pir Cakmak, F., Keating, C. D. & Bevilacqua, P. C. Physical principles and extant biology reveal roles for RNA-containing membraneless compartments in origins of life chemistry. Biochemistry 57, 2509–2519 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Toparlak, O. D. & Mansy, S. S. Progress in synthesizing protocells. Exp. Biol. Med. 244, 304–313 (2019).

    Article  CAS  Google Scholar 

  8. Kurihara, K. et al. A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Blain, J. C. & Szostak, J. W. Progress toward synthetic cells. Annu. Rev. Biochem. 83, 615–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogele, K. et al. Towards synthetic cells using peptide-based reaction compartments. Nat. Commun. 9, 3862 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schreiber, A., Huber, M. C. & Schiller, S. M. Prebiotic protocell model based on dynamic protein membranes accommodating anabolic reactions. Langmuir 35, 9593–9610 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Rahman, Md. M., Ueda, M., Hirose, T. & Ito, Y. Spontaneous formation of gating lipid domain in uniform-size peptide vesicles for controlled release. J. Am. Chem. Soc. 140, 17956–17961 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Monnard, P.-A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268, 196–207 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Litschel, T. et al. Freeze–thaw cycles induce content exchange between cell-sized lipid vesicles. New J. Phys. 20, 055008 (2018).

    Article  CAS  Google Scholar 

  16. Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Abbas, M., Lipiński, W. P., Wang, J. & Spruijt, E. Peptide-based coacervates as biomimetic protocells. Chem. Soc. Rev. 50, 3690–3705 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakashima, K. K., Baaij, J. F. & Spruijt, E. Reversible generation of coacervate droplets in an enzymatic network. Soft Matter 14, 361–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Love, C. et al. Reversible pH‐responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. Angew. Chem. Int. Ed. 59, 5950–5957 (2020).

    Article  CAS  Google Scholar 

  22. Boeynaems, S. et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 28, 420–435 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yin, Y. et al. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation. Nat. Commun. 7, 10658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perry, S. L. et al. Chirality-selected phase behaviour in ionic polypeptide complexes. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  27. Aumiller, W. M. & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Madinya, J. J., Chang, L.-W., Perry, S. L. & Sing, C. E. Sequence-dependent self-coacervation in high charge-density polyampholytes. Mol. Syst. Des. Eng. 5, 632–644 (2020).

    Article  CAS  Google Scholar 

  29. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murthy, A. C. et al. Molecular interactions underlying liquid–liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637–648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomes, E. & Shorter, J. The molecular language of membraneless organelles. J. Biol. Chem. 294, 7115–7127 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Reches, M. & Gazit, E. Formation of closed-cage nanostructures by self-assembly of aromatic dipeptides. Nano Lett. 4, 581–585 (2004).

    Article  CAS  Google Scholar 

  36. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, C., Liu, K., Li, J. & Yan, X. Functional architectures based on self-assembly of bio-inspired dipeptides: structure modulation and its photoelectronic applications. Adv. Colloid Interface Sci. 225, 177–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Yuan, C. et al. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem. Int. Ed. 58, 18116–18123 (2019).

    Article  CAS  Google Scholar 

  39. Brady, J. P. et al. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. Proc. Natl Acad. Sci. USA 114, E8194–E8203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sprakel, J., Besseling, N. A. M., Cohen Stuart, M. A. & Leermakers, F. A. M. Phase behavior of flowerlike micelles in a SCF cell model. Eur. Phys. J. E 25, 163–173 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Srivastava, S. et al. Gel phase formation in dilute triblock copolyelectrolyte complexes. Nat. Commun. 8, 14131 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang, X., Malhotra, S., Molina, M. & Haag, R. Micro- and nanogels with labile crosslinks—from synthesis to biomedical applications. Chem. Soc. Rev. 44, 1948–1973 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Bungenberg de Jong, H. G. & Kruyt, H. R. Coacervation (partial miscibility in colloid systems). Proc. Neth. Acad. Sci. 32, 849–856 (1929).

    Google Scholar 

  44. Schuster, B. S. et al. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior. Proc. Natl Acad. Sci. USA 117, 11421–11431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, H. et al. RNA controls polyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaminker, I. et al. Simple peptide coacervates adapted for rapid pressure-sensitive wet adhesion. Soft Matter 13, 9122–9131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. André, A. A. M. & Spruijt, E. Liquid–liquid phase separation in crowded environments. Int. J. Mol. Sci. 21, 5908 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  48. Shen, Y. et al. Biomolecular condensates undergo a generic shear-mediated liquid-to-solid transition. Nat. Nanotechnol. 15, 841–847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gutierrez, J. M. P., Hinkley, T., Taylor, J. W., Yanev, K. & Cronin, L. Evolution of oil droplets in a chemorobotic platform. Nat. Commun. 5, ncomms6571 (2014).

    Article  CAS  Google Scholar 

  50. Tena-Solsona, M., Wanzke, C., Riess, B., Bausch, A. R. & Boekhoven, J. Self-selection of dissipative assemblies driven by primitive chemical reaction networks. Nat. Commun. 9, 2044 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cashman, T. J. & Linton, B. R. β-Sheet hydrogen bonding patterns in cystine peptides. Org. Lett. 9, 5457–5460 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Bogunia, M. & Makowski, M. Influence of ionic strength on hydrophobic interactions in water: dependence on solute size and shape. J. Phys. Chem. B 124, 10326–10336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biancalana, M., Makabe, K., Koide, A. & Koide, S. Molecular mechanism of thioflavin-T binding to the surface of β-rich peptide self-assemblies. J. Mol. Biol. 385, 1052–1063 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, M. et al. Partitioning of small molecules in hydrogen-bonding complex coacervates of poly(acrylic acid) and poly(ethylene glycol) or pluronic block copolymer. Macromolecules 50, 3818–3830 (2017).

    Article  CAS  Google Scholar 

  55. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cakmak, F. P., Choi, S., Meyer, M. O., Bevilacqua, P. C. & Keating, C. D. Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments. Nat. Commun. 11, 5949 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vieregg, J. R. et al. Oligonucleotide–peptide complexes: phase control by hybridization. J. Am. Chem. Soc. 140, 1632–1638 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luppi, G. et al. Dipeptide-catalyzed asymmetric aldol condensation of acetone with (N-alkylated) isatins. J. Org. Chem. 70, 7418–7421 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Huerta, E., van Genabeek, B., Stals, P. J. M., Meijer, E. W. & Palmans, A. R. A. A modular approach to introduce function into single-chain polymeric nanoparticles. Macromol. Rapid Commun. 35, 1320–1325 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Li, J. et al. Determination of residual phenylhydrazines in drug substances by high-performance liquid chromatography with pre-column derivatization. Anal. Methods 11, 6146–6152 (2019).

    Article  CAS  Google Scholar 

  64. Frederix, P. W. J. M. et al. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat. Chem. 7, 30–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Serrano-Luginbühl, S., Ruiz-Mirazo, K., Ostaszewski, R., Gallou, F. & Walde, P. Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nat. Rev. Chem. 2, 306–327 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement number 851963, and from the Netherlands Organization for Scientific Research (NWO-Startup to E.S.). M.A. gratefully acknowledges a Marie Skłodowska Curie Individual Fellowship (project number 839177).

Author information

Authors and Affiliations

Authors

Contributions

M.A. and E.S. conceived the idea and designed the experiments. M.A. and W.P.L. synthesized the peptide derivatives and performed their analysis. M.A. performed redox, microscopy and microreactor experiments. K.K.N. performed microscopy experiments with FFssFF. All authors discussed the results and interpreted data. M.A., E.S. and W.T.S.H. wrote the manuscript.

Corresponding author

Correspondence to Evan Spruijt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Samrat Mukhopadhyay and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods 1 and 2, Figs. 1–28, discussion and Table 1.

Source data

Source Data Fig. 1

Unprocessed images, Source data points

Source Data Fig. 2

Unprocessed images, Source data points

Source Data Fig. 3

Unprocessed images

Source Data Fig. 4

Source data points and fits

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M., Lipiński, W.P., Nakashima, K.K. et al. A short peptide synthon for liquid–liquid phase separation. Nat. Chem. 13, 1046–1054 (2021). https://doi.org/10.1038/s41557-021-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00788-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing