Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors

Abstract

Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-β-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential β-lactamase stable β-lactam mimics. Subsequent structure–activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL–carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: InC binding to MBLs mimics that of intact β-lactam substrates and/or products.
Fig. 2: InCs inhibit B1 and B3 MBLs via an unprecedented MBL binding mode.
Fig. 3: Heat-map analysis comparing the potency of InCs for selected clinically important SBLs and MBLs with β-lactamase inhibitors.
Fig. 4: Strategies for Indole carboxylate synthesis.
Fig. 5: InC 58 potentiates meropenem activity in vitro against clinically relevant strains.
Fig. 6: InC 58 potentiates meropenem activity in vivo against clinically relevant strains.

Similar content being viewed by others

References

  1. Livermore, D. M. et al. CTX-M: changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 59, 165–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Article  PubMed  Google Scholar 

  4. He, T. et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 4, 1450–1456 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Yahav, D. et al. New β-lactam-β-lactamase inhibitor combinations. Clin. Microbiol. Rev. 34, e00115-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 62, e01076-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rotondo, C. M. & Wright, G. D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol. 39, 96–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Bonomo, R. A. et al. Carbapenemase-producing organisms: a global scourge. Clin. Infect. Dis. 66, 1290–1297 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, D. Y., Abboud, M. I., Markoulides, M. S., Brem, J. & Schofield, C. J. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med. Chem. 8, 1063–1084 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Ehmann, D. E. et al. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc. Natl Acad. Sci. USA 109, 11663–11668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lomovskaya, O. et al. Vaborbactam: spectrum of β-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 61, e01443-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langley, G. W. et al. Profiling interactions of vaborbactam with metallo-β-lactamases. Bioorg. Med. Chem. Lett. 29, 1981–1984 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papp-Wallace, K. M., Mack, A. R., Taracila, M. A. & Bonomo, R. A. Resistance to novel β-lactam-β-lactamase inhibitor combinations: the ‘price of progress’. Infect. Dis. Clin. North Am. 34, 773–819 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lohans, C. T., Brem, J. & Schofield, C. J. New Delhi metallo-β-lactamase 1 catalyzes avibactam and aztreonam hydrolysis. Antimicrob. Agents Chemother. 61, e01224-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meini, M. R., Llarrull, L. I. & Vila, A. J. Overcoming differences: the catalytic mechanism of metallo-β-lactamases. FEBS Lett. 589, 3419–3432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drawz, S. M. & Bonomo, R. A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, D. T. et al. ANT2681: SAR studies leading to the identification of a metallo-β-lactamase inhibitor with potential for clinical use in combination with meropenem for the treatment of infections caused by NDM-producing Enterobacteriaceae. ACS Infect. Dis. 6, 2419–2430 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, B. et al. Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J. Med. Chem. 63, 2789–2801 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Bush, K. & Bradford, P. A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 33, e00047-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sauvage, E. & Terrak, M. Glycosyltransferases and transpeptidases/penicillin-binding proteins: valuable targets for new antibacterials. Antibiotics 5, 12 (2016).

    Article  PubMed Central  Google Scholar 

  22. Bush, K. & Bradford, P. A. Interplay between β-lactamases and new β-lactamase inhibitors. Nat. Rev. Microbiol. 17, 295–306 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Dik, D. A., Fisher, J. F. & Mobashery, S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem. Rev. 118, 5952–5984 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tipper, D. J. & Strominger, J. L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc. Natl Acad. Sci. USA 54, 1133–1141 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karawajczyk, A., Orling, K. M., de Vlieger, J. S. B., Rijnders, T. & Tzalis, D. The European Lead Factory: a blueprint for public–private partnerships in early drug discovery. Front. Med. 3, 75 (2017).

    Article  Google Scholar 

  26. Besnard, J., Jones, P. S., Hopkins, A. L. & Pannifer, A. D. The Joint European Compound Library: boosting precompetitive research. Drug Discov. Today 20, 181–186 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, Y. H., Li, G. & Li, G. B. Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance. Med. Res. Rev. 40, 1558–1592 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Ju, L. C., Cheng, Z., Fast, W., Bonomo, R. A. & Crowder, M. W. The continuing challenge of metallo-β-lactamase inhibition: mechanism matters. Trends Pharmacol. Sci. 39, 635–647 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brem J., et al. Inhibitors of metallo-beta-lactamases. World Patent WO2017093727A1 (2017).

  30. Lohans, C. T. et al. Mechanistic Insights into β-lactamase-catalysed carbapenem degradation through product characterisation. Sci. Rep. 9, 13608 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. King, D. T., Worrall, L. J., Gruninger, R. & Strynadka, N. C. J. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J. Am. Chem. Soc. 134, 11362–11365 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Feng, H. et al. The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis. Nat. Commun. 8, 2242 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Raczynska, J. E., Shabalin, I. G., Minor, W., Wlodawer, A. & Jaskolski, M. A close look onto structural models and primary ligands of metallo-β-lactamases. Drug Resist. Update 40, 1–12 (2018).

    Article  Google Scholar 

  34. Cahill, S. T. et al. Studies on the inhibition of AmpC and other β-lactamases by cyclic boronates. Biochim. Biophys. Acta Gen. Subj. 1863, 742–748 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Jiménez-Castellanos, J.-C. et al. Envelope proteome changes driven by RamA overproduction in Klebsiella pneumoniae that enhance acquired β-lactam resistance. J. Antimic. Chemother. 73, 88–94 (2017).

    Article  Google Scholar 

  36. Krajnc, A. et al. Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases. J. Med. Chem. 62, 8544–8556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lisa, M.-N. et al. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat. Comm. 8, 538 (2017).

    Article  Google Scholar 

  38. Brem, J. et al. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates. Nat. Commun. 7, 12406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galán, J.-C., Morosini, M.-I., Baquero, M.-R., Reig, M. & Baquero, F. Haemophilus influenzae bla(ROB-1) mutations in hypermutagenic ΔampC Escherichia coli conferring resistance to cefotaxime and β-lactamase inhibitors and increased susceptibility to cefaclor. Antimic. Agents Chemother. 47, 2551–2557 (2003).

    Article  Google Scholar 

  41. Theuretzbacher, U. et al. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 18, 286–298 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Mojica, M. F., Bonomo, R. A. & Fast, W. B1-metallo-β-lactamases: where do we stand? Curr. Drug Targets 17, 1029–1050 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brem, J. et al. Structural basis of metallo-4-lactamase inhibition by captopril stereoisomers. Antimic. Agents Chemother. 60, 142–150 (2015).

    Article  Google Scholar 

  44. Brem, J. et al. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition. Nat. Chem. 6, 1084–1090 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Pettinati, I., Brem, J., Lee, S. Y., McHugh, P. J. & Schofield, C. J. The chemical biology of human metallo-β-lactamase fold proteins. Trends Biochem. Sci 41, 338–355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pallett, A. & Hand, K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. J. Antimicrob. Chemother. 65, iii25–iii33 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the ELF Screening partners for efforts leading to the initial hits, the current and past ENABLE Portfolio Management Committee (PMC) members and EFPIA partners for guidance, and the Diamond Light Source synchrotron for access to the IO3, IO4 and IO4-1 beamlines. J.U.H. thanks N. Sipari from the Viikki Metabolomics Unit (Helsinki Institute of Life Science, University of Helsinki and Biocenter Finland) for her expertise with the liquid chromatography–mass spectroscopy analyses. L.E. thanks Y. Zhou for help in the laboratory, and H. Saif, R. Farzana, E. Portal, K. Sands, K. Thomson and B. Hassan for providing strains for the Enterobacterales collection. The ELF work and the ENABLE project that led to these results were supported by the Innovative Medicines Initiative Joint Undertaking (grant agreements no. 115489 and no. 115583), which have financial contributions from the European Union’s Seventh Framework Programme (FP7/2007–2013), and the EFPIA companies’ in-kind contributions. The ENABLE project is financially supported by contributions from Academic and SME partners. The Oxford work was also supported by Cancer Research UK (C9047/A24759), the Medical Research Council, the Biotechnology and Biological Research Council (BB/S50676X/1) and the Ineos Oxford Institute for Antimicrobial Research (C.J.S.). This research was funded in whole, or in part, by the Wellcome Trust (grant no. 106244/Z/14/Z and no. 099141/Z/12/Z). The Bristol work was also supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) grant R01AI100560 (J.S. and P.H.) (the content is the responsibility of the authors and does not necessarily represent official views of the NIH) and the BrisSynBio Biosuite (UK Biotechnology and Biological Sciences (BBSRC) and Engineering and Physical Sciences (EPSRC) Research Councils (BB/L01386X/1) and BBSRC ALERT14 initiative (BB/M012107/1).

Author information

Authors and Affiliations

Authors

Contributions

J.B., T.P., J.H., P.D., A.J.M.F., K.S., G.G.C., P.K., S.S., D.K., R.K.L., Juliane Schmidt (Adrian), D.L., A.G.B., J.R., L.R., A.M.R., S.D.S.P., A.D.P., M.M., M.P., A.K.B., Peter Brandt, J.Y.-K., E.B., M.G.P.P., Fredrik Björkling, P.S.J., E.S., A.M. and C.J.S. conducted the medicinal chemistry analysis and/or chemical synthesis. J.U.H., E.L., E.I.N., J.K. and S.G. led the safety and/or in vivo efficacy experiments. A.E., M.B. and Pawel Baranczewski led or conducted the physicochemical and ADME testing. L.E., M.-C.T., A.F.A., J.C.J.-C., E.W. and J.M.T. conducted the microbiological experiments under the guidance of M.B.A., M.G., R.C., Fernando Baquero, and T.R.W. K.C., M.E.K., G.W.L., M.S., A.M.R., I.H.N., P.A.L., S.P.M. and J.B. conducted the biochemical or biophysical testing. P.H., M.A.M., T.M.L., James Spencer and J.B. conducted the X-ray crystallography work and analysis. J.B. oversaw all the studies. J.B. and C.J.S. wrote the first draft of the manuscript with subsequent input from all the authors.

Corresponding authors

Correspondence to Jürgen Brem or Christopher J. Schofield.

Ethics declarations

Competing interests

A patent has been filed concerning the indole carboxylates as MBL inhibitors (WO2017093727A1)29. The inventors may benefit financially from the work. The work described in the manuscript was carried out prior to these employments, which are not relevant to the work. G.W.L. is an employee of Charles River Laboratories, M.S., J.R., L.R., S.P.M., P.S.J. and A.M. are employees of BioAscent Discovery Ltd, A.M.R. is an employee of AstraZeneca and E.B. is an employee of Evotec.

Additional information

Peer review information Nature Chemistry thanks Hongzhe Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–31 and Methods.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brem, J., Panduwawala, T., Hansen, J.U. et al. Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors. Nat. Chem. 14, 15–24 (2022). https://doi.org/10.1038/s41557-021-00831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00831-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research