Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Advances in phenology are conserved across scale in present and future climates

Abstract

Warming temperatures are advancing the timing of seasonal vegetation development in the extratropics, altering plant–animal interactions and increasing the risk of trophic asynchrony. Forest understories are critical yet under-observed ecosystems in which phenological patterns are both altered and obscured by overstory trees. We address the challenge of observing phenological dynamics in the understory by exploiting the physiological relationship between plant phenology and temperature accumulation, a horticultural principle we show to be preserved across spatial scales through a combination of field and growth-chamber observations. These observations provide the foundation for a spaceborne thermal-observation framework, which can trace the discrete phenophases of forest understory plants in near-real time. The thermal basis of this framework also enables the prediction of understory phenology for future climates, which we demonstrate here using Shepherdia canadensis, a widespread fruiting shrub of western North America that has important trophic connections to frugivores. Our approach enables researchers to assess the regional-scale impacts of climate change on bottom-up forest ecosystems and to monitor emerging trophic mismatches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The extent of the study area in the Rocky Mountains of western Alberta, Canada.
Fig. 2: The complete sequential phenology of S. canadensis.
Fig. 3: Variability in phenology map predictions of phenophase start dates for individual plants.
Fig. 4: Shift in the peak spatial coverage of ripe fruit between the present day and the RCP4.5 scenario.
Fig. 5: Seasonal spatial coverage of ripe fruit for the present day and the RCP4.5 warming scenario.
Fig. 6: Difference in phenophase timing between the RCP4.5 (2080s) and present-day (1961–1990) growth-chamber scenarios.

Similar content being viewed by others

Data availability

Daily MODIS LST imagery products are available from the NASA Land Processes Distributed Active Archive Center (LP DAAC, http://lpdaac.usgs.gov). The data that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

The computer code and algorithms generated during this study are available from the corresponding author on reasonable request.

References

  1. Reeves, P. H. & Coupland, G. Response of plant development to environment: control of flowering by day length and temperature. Curr. Opin. Plant Biol. 3, 37–42 (2000).

    Article  CAS  Google Scholar 

  2. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

    Article  CAS  Google Scholar 

  3. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  4. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article  Google Scholar 

  5. Kerby, J. T., Wilmers, C. C. & Post, E. in Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives (eds Ohgushi, T. et al.) 508–525 (Cambridge Univ. Press, 2012).

  6. Post, E. S. & Inouye, D. W. Phenology: response, driver, and integrator. Ecology 89, 319–320 (2008).

    Article  Google Scholar 

  7. Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–294 (2016).

    Article  CAS  Google Scholar 

  8. Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article  Google Scholar 

  9. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Article  Google Scholar 

  10. Zhang, X. Y. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    Article  Google Scholar 

  11. Nijland, W., Bolton, D. K., Coops, N. C. & Stenhouse, G. Imaging phenology: scaling from camera plots to landscapes. Remote Sens. Environ. 177, 13–20 (2016).

    Article  Google Scholar 

  12. Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).

    Article  Google Scholar 

  13. De Frenne, P. & Verheyen, K. Weather stations lack forest data. Science 351, 234–234 (2016).

    Article  Google Scholar 

  14. Hoover, M. W. Some effects of temperature on the growth of southern peas. Proc. Am. Soc. Hortic. Sci. USA 66, 308–312 (1955).

    Google Scholar 

  15. Reáumur, R. A. F. Observations du thermomètre, faites à Paris pendant I’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelques-unes de nos isles de l’Amérique. Mem. Acad. Sci. Paris 545–576 (1735).

  16. Cesaraccio, C., Spano, D., Duce, P. & Snyder, R. L. An improved model for determining degree-day values from daily temperature data. Int. J. Biometeorol. 45, 161–169 (2001).

    Article  CAS  Google Scholar 

  17. Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State Univ., 2001).

  18. Snyder, R. L., Spano, D., Cesaraccio, C. & Duce, P. Determining degree-day thresholds from field observations. Int. J. Biometeorol. 42, 177–182 (1999).

    Article  Google Scholar 

  19. Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. Bears Biol. Manag. 7, 199–213 (1987).

    Google Scholar 

  20. Laskin, D. N. & McDermid, G. J. Evaluating the level of agreement between human and time-lapse camera observations of understory plant phenology at multiple scales. Ecol. Inform. 33, 1–9 (2016).

    Article  Google Scholar 

  21. Misra, G., Buras, A. & Menzel, A. Effects of different methods on the comparison between land surface and ground phenology—a methodological case study from south-western Germany. Remote Sens. 8, 753 (2016).

    Article  Google Scholar 

  22. Yang, S. S., Logan, J. & Coffey, D. L. Mathematical formulas for calculating the base temperature for growing degree-days. Agric. For. Meteorol. 74, 61–74 (1995).

    Article  Google Scholar 

  23. Neteler, M., Roiz, D., Rocchini, D., Castellani, C. & Rizzoli, A. Terra and Aqua satellites track tiger mosquito invasion: modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int. J. Health Geogr. 10, 49 (2011).

    Article  Google Scholar 

  24. Sun, Y. J. et al. Air temperature retrieval from remote sensing data based on thermodynamics. Theor. Appl. Climatol. 80, 37–48 (2005).

    Article  Google Scholar 

  25. Niclos, R., Valiente, J. A., Barbera, M. J. & Caselles, V. Land surface air temperature retrieval from EOS-MODIS images. IEEE Geosci. Remote Sens. Lett. 11, 1380–1384 (2014).

    Article  Google Scholar 

  26. De Frenne, P. et al. Microclimate moderates plant responses to macroclimate warming. Proc. Natl Acad. Sci. USA 110, 18561–18565 (2013).

    Article  Google Scholar 

  27. Laskin, D. N., Montaghi, A., Nielsen, S. E. & McDermid, G. J. Estimating understory temperatures using MODIS LST in mixed cordilleran forests. Remote Sens. 8, 658 (2016).

    Article  Google Scholar 

  28. Jang, K., Kang, S., Kimball, J. S. & Hong, S. Y. Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sens. 6, 8387–8404 (2014).

    Article  Google Scholar 

  29. Coops, N. C., Duro, D. C., Wulder, M. A. & Han, T. Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information. Int. J. Remote Sens. 28, 2391–2396 (2007).

    Article  Google Scholar 

  30. Crimmins, M. A. & Crimmins, T. M. Monitoring plant phenology using digital repeat photography. Environ. Manage. 41, 949–958 (2008).

    Article  Google Scholar 

  31. Huang, R. et al. Mapping of daily mean air temperature in agricultural regions using daytime and nighttime land surface temperatures derived from TERRA and AQUA MODIS data. Remote Sens. 7, 8728–8756 (2015).

    Article  Google Scholar 

  32. Laskin, D. N. Montaghi, A. & McDermid, G. J. An open-source method of constructing cloud-free composites of forest understory temperature using MODIS. Remote Sens. Lett. 8, 165–174 (2017).

    Article  Google Scholar 

  33. Metz, M., Rocchini, D. & Neteler, M. Surface temperatures at the continental scale: tracking changes with remote sensing at unprecedented detail. Remote Sens. 6, 3822–3840 (2014).

    Article  Google Scholar 

  34. Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77 (2011).

    Article  CAS  Google Scholar 

  35. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article  Google Scholar 

  36. Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

    Article  Google Scholar 

  37. Crimmins, T. M., Crimmins, M. A., Gerst, K. L., Rosemartin, A. H. & Weltzin, J. F. USA National Phenology Network’s volunteer-contributed observations yield predictive models of phenological transitions. PLoS ONE 12, e0182919 (2017).

    Article  Google Scholar 

  38. Melaas, E. K., Friedl, M. A. & Richardson, A. D. Multiscale modeling of spring phenology across deciduous forests in the eastern United States. Glob. Change Biol. 22, 792–805 (2016).

    Article  Google Scholar 

  39. Izquierdo-Verdiguier, E., Zurita-Milla, R., Ault, T. R. & Schwartz, M. D. Development and analysis of spring plant phenology products: 36 years of 1-km grids over the conterminous US. Agric. For. Meteorol. 262, 34–41 (2018).

    Article  Google Scholar 

  40. Primack, R. B. & Miller-Rushing, A. J. Broadening the study of phenology and climate change. New Phytol. 191, 307–309 (2011).

    Article  Google Scholar 

  41. Yu, R., Schwartz, M. D., Donnelly, A. & Liang, L. An observation-based progression modeling approach to spring and autumn deciduous tree phenology. Int. J. Biometeorol. 60, 335–349 (2016).

    Article  Google Scholar 

  42. Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    Article  Google Scholar 

  43. Liang, L., Schwartz, M. D. & Fei, S. Photographic assessment of temperate forest understory phenology in relation to springtime meteorological drivers. Int. J. Biometeorol. 56, 343–355 (2012).

    Article  Google Scholar 

  44. Zhang, F., Zhang, L. W., Shi, J. J. & Huang, J. F. Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere 24, 450–460 (2014).

    Article  CAS  Google Scholar 

  45. Mendelsohn, R. et al. The ecosystem impacts of severe warming. Am. Econ. Rev. 106, 612–614 (2016).

    Article  Google Scholar 

  46. Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildlife Biol. 22, 107–116 (2016).

    Article  Google Scholar 

  47. Deacy, W. W. et al. Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon. Proc. Natl Acad. Sci. USA 114, 10432–10437 (2017).

    Article  CAS  Google Scholar 

  48. Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

    Article  CAS  Google Scholar 

  49. Harsch, M. A. et al. Moving forward: insights and applications of moving-habitat models for climate change ecology. J. Ecol. 105, 1169–1181 (2017).

    Article  Google Scholar 

  50. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

    Article  Google Scholar 

  51. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  52. Dierschke, H. On the recording and presentation of phenological phenomena in plant communities (trans. Wessell, R. E. & Talbot, S. S.). In International Symposium for Vegetation Science (IVV, 1972).

  53. Congalton, R. G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (CRC, 2002).

  54. Altman, D. G. Practical Statistics for Medical Research (CRC, 1991).

  55. Stata v.13.0 (Stata Corporation, 2013).

  56. Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L. & Koh, S. Evaluating cloud contamination in clear-sky MODIS TERRA daytime land surface temperatures using ground-based meteorology station observations. J. Clim. 26, 1551–1560 (2013).

    Article  Google Scholar 

  57. Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N. & Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 124, 108–121 (2012).

    Article  Google Scholar 

  58. Rhee, J. & Im, J. Estimating high spatial resolution air temperature for regions with limited in situ data using MODIS products. Remote Sens. 6, 7360–7378 (2014).

    Article  Google Scholar 

  59. Winscanopy v.2006c (Regent Instruments, 2006).

  60. Linke, J. et al. The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis. Landscape Ecol. 24, 157–170 (2009).

    Article  Google Scholar 

  61. Zorer, R. et al. Daily MODIS land surface temperature data for the analysis of the heat requirements of grapevine varieties. IEEE Trans. Geosci. Remote Sens. 51, 2128–2135 (2013).

    Article  Google Scholar 

  62. Neteler, M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data. Remote Sens. 2, 333–351 (2010).

    Article  Google Scholar 

  63. Mostovoy, G. V., King, R. L., Reddy, K. R., Kakani, V. G. & Filippova, M. G. Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GISci. Remote Sens. 43, 78–110 (2006).

    Article  Google Scholar 

  64. Snyder, R. L. Hand calculating degree days. Agric. For. Meteorol. 35, 353–358 (1985).

    Article  Google Scholar 

  65. Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).

    Article  Google Scholar 

  66. McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).

    Article  Google Scholar 

  67. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  68. Python Language Reference v.2.7.0 (PythonLabs, 2010).

  69. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  70. Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).

    Article  Google Scholar 

  71. Roberts, D. R., Nielsen, S. E. & Stenhouse, G. B. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes. Ecol. Appl. 24, 1144–1154 (2014).

    Article  Google Scholar 

  72. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article  Google Scholar 

  73. Roberts, D. R. et al. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Article  Google Scholar 

  74. Barry, S. & Elith, J. Error and uncertainty in habitat models. J. Appl. Ecol. 43, 413–423 (2006).

    Article  Google Scholar 

  75. Norby, R. J., Hartz-Rubin, J. S. & Verbrugge, M. J. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Glob. Change Biol. 9, 1792–1801 (2003).

    Article  Google Scholar 

  76. Sherry, R. A. et al. Divergence of reproductive phenology under climate warming. Proc. Natl Acad. Sci. USA 104, 198–202 (2007).

    Article  CAS  Google Scholar 

  77. Clark, J. S., Salk, C., Melillo, J. & Mohan, J. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Func. Ecol. 28, 1344–1355 (2014).

    Article  Google Scholar 

  78. Kopp, C. W. & Cleland, E. E. A. A range-expanding shrub species alters plant phenological response to experimental warming. PLoS ONE 10, 0139029 (2015).

    Google Scholar 

  79. van Oldenborgh, G. J. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Annex 1 (IPCC, Cambridge Univ. Press, 2013).

  80. Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Alberta Innovates Biosolutions, the many partners of the Foothills Research Institute Grizzly Bear programme and programme lead G. Stenhouse for their generous funding and logistical support. Further thanks go to J. Woosaree, J. Newman and the staff at InnoTech Alberta for facilitating the growth-chamber experiments; R. Snyder for input on deriving base temperatures; and the NASA LP DAAC for access to the MODIS LST products. Additional funding support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant to G.J.M., Alberta Innovates, the University of Calgary and the Vanier Canada Graduate Scholarships Programme.

Author information

Authors and Affiliations

Authors

Contributions

D.N.L., G.J.M., S.E.N. and S.J.M. conceived the study design. G.J.M., S.E.N. and S.J.M. supervised the analysis. D.N.L performed the data collection and experiments. S.E.N. and D.N.L developed the statistical analysis. D.R.R. produced the SDMs and downscaled the RCP4.5 anomaly surface. A.M. wrote the code for automating the MODIS LST image processing and analysis and D.N.L. wrote the manuscript. All authors contributed to manuscript editing.

Corresponding author

Correspondence to David N. Laskin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Climate Change thanks Eric Post and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laskin, D.N., McDermid, G.J., Nielsen, S.E. et al. Advances in phenology are conserved across scale in present and future climates. Nat. Clim. Chang. 9, 419–425 (2019). https://doi.org/10.1038/s41558-019-0454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-019-0454-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing