Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry

Abstract

The commercialization of high-energy batteries with lithium-rich cathode materials exhibiting combined cationic/anionic redox processes awaits the elimination of certain practical bottlenecks. Among these, large voltage hysteresis remains the most obscure from a fundamental thermochemical perspective. Here, we study this issue by directly measuring, via isothermal calorimetry, the heat generated by Li/Li2Ru0.75Sn0.25O3 (Li/LRSO) cells during various cycling conditions, with LRSO being a ‘model’ Li-rich layered cathode. We show how this heat thermodynamically relates to the lost electrical work that is crucial for practical applications. We further reveal that anionic redox on charging and discharging adopts different metastable paths having non-identical enthalpy potentials, such that the overall Li content no longer remains the unique reaction coordinate, unlike in fully path-reversible cationic redox. We elucidate how quasi-static voltage hysteresis is related to heat dissipated due to non-equilibrium entropy production. Overall, this study establishes the great benefits of isothermal calorimetry for enabling energy-efficient electrode materials in next-generation batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of voltage profiles of Li-rich NMC and LRSO.
Fig. 2: Isothermal calorimetry characterization of the 3.5 V cationic redox step.
Fig. 3: Isothermal calorimetry characterization of the full first cycle.
Fig. 4: Isothermal calorimetry characterization of activated LRSO.
Fig. 5: Isothermal calorimetry for charge voltage window opening of activated LRSO.
Fig. 6: Proposed mechanism for hysteretic bulk anionic redox in activated LRSO.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the article and its Supporting Information files. Extra data are available from the corresponding authors on reasonable request.

References

  1. Zheng, J. et al. Li- and Mn-rich cathode materials: challenges to commercialization.Adv. Energy Mater. 7, 1601284 (2016).

    Article  Google Scholar 

  2. Manthiram, A., Knight, J. C., Myung, S.-T., Oh, S.-M. & Sun, Y.-K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv. Energy Mater. 6, 1501010 (2016).

    Article  Google Scholar 

  3. Myung, S.-T. et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives. ACS Energy Lett. 2, 196–223 (2017).

    Article  Google Scholar 

  4. Luo, K. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  Google Scholar 

  5. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  Google Scholar 

  6. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  Google Scholar 

  7. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries.Nat. Energy 3, 373–386 (2018).

    Article  Google Scholar 

  8. Croy, J. R. et al. Examining hysteresis in composite x Li2MnO3 • (1–x) LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013).

    Article  Google Scholar 

  9. Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Editors’ choice—practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163, A2965–A2976 (2016).

    Article  Google Scholar 

  10. Dees, D. W. et al. Electrochemical modeling and performance of a lithium- and manganese-rich layered transition-metal oxide positive electrode. J. Electrochem. Soc. 162, A559–A572 (2015).

    Article  Google Scholar 

  11. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the U.S. Department of Energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    Article  Google Scholar 

  12. Meister, P. et al. Best practice: performance and cost evaluation of lithium ion battery active materials with special emphasis on energy efficiency. Chem. Mater. 28, 7203–7217 (2016).

    Article  Google Scholar 

  13. Ohzuku, T., Nagayama, M., Tsuji, K. & Ariyoshi, K. High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J. Mater. Chem. 21, 10179–10188 (2011).

    Article  Google Scholar 

  14. Maitra, U. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 10, 288–295 (2018).

    Article  Google Scholar 

  15. Mortemard de Boisse, B. et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Commun. 7, 11397 (2016).

    Article  Google Scholar 

  16. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  Google Scholar 

  17. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018).

    Article  Google Scholar 

  18. Croy, J. R., Gallagher, K. G., Balasubramanian, M., Long, B. R. & Thackeray, M. M. Quantifying hysteresis and voltage fade in x Li2MnO3 • (1–x)LiMn0.5Ni0.5 O2 electrodes as a function of Li2MnO3 content. J. Electrochem. Soc. 161, A318–A325 (2014).

    Article  Google Scholar 

  19. Konishi, H. et al. Electrochemical reaction mechanisms under various charge–discharge operating conditions for Li1.2Ni0.13Mn0.54Co0.13O2 in a lithium-ion battery. J. Solid State Chem. 262, 294–300 (2018).

    Article  Google Scholar 

  20. Dogan, F. et al. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328–2335 (2015).

    Article  Google Scholar 

  21. Kleiner, K. et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018).

    Article  Google Scholar 

  22. Konishi, H. et al. Origin of hysteresis between charge and discharge processes in lithium-rich layer-structured cathode material for lithium-ion battery. J. Power Sources 298, 144–149 (2015).

    Article  Google Scholar 

  23. Assat, G., Iadecola, A., Delacourt, C., Dedryvère, R. & Tarascon, J.-M. Decoupling cationic–anionic redox processes in a model Li-rich cathode via operando X-ray absorption spectroscopy. Chem. Mater. 29, 9714–9724 (2017).

    Article  Google Scholar 

  24. Rinaldo, S. G. et al. Physical theory of voltage fade in lithium- and manganese-rich transition metal oxides. J. Electrochem. Soc. 162, A897–A904 (2015).

    Article  Google Scholar 

  25. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  Google Scholar 

  26. Dahn, J. R. et al. Entropy of the intercalation compound LixMo6Se8 from calorimetry of electrochemical cells. Phys. Rev. B 32, 3316–3318 (1985).

    Article  Google Scholar 

  27. Thomas, K. E. & Newman, J. Thermal modeling of porous insertion electrodes. J. Electrochem. Soc. 150, A176 (2003).

    Article  Google Scholar 

  28. Thomas, K. E. & Newman, J. Heats of mixing and of entropy in porous insertion electrodes. J. Power Sources 119–121, 844–849 (2003).

    Article  Google Scholar 

  29. Kondepudi, D. & Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley & Sons, 2015).

  30. Glazier, S. L., Nelson, K. J., Allen, J. P., Li, J. & Dahn, J. R. The effect of different Li(Ni1−xyMnxCoy)O2 positive electrode materials and coatings on parasitic heat flow as measured by isothermal microcalorimetry, ultra-high precision coulometry and long term cycling. J. Electrochem. Soc. 164, A1203–A1212 (2017).

    Article  Google Scholar 

  31. Shi, W. et al. The effect of entropy and enthalpy changes on the thermal behavior of Li–Mn-rich layered composite cathode materials. J. Electrochem. Soc. 163, A571–A577 (2016).

    Article  Google Scholar 

  32. Salager, E. et al. Solid-state NMR of the family of positive electrode materials Li2Ru1–ySnyO3 for lithium-ion batteries. Chem. Mater. 26, 7009–7019 (2014).

    Article  Google Scholar 

  33. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2001).

  34. Sauvage, J.-P. Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998).

    Article  Google Scholar 

  35. Sano, M. & Taube, H. ‘Molecular hysteresis’ in an electrochemical system revisited. Inorg. Chem. 33, 705–709 (1994).

    Article  Google Scholar 

  36. Sano, M. Mechanism of the molecular hysteresis. Polym. Adv. Technol. 6, 178–184 (1995).

    Article  Google Scholar 

  37. Rouxel, J. Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    Article  Google Scholar 

  38. De Boisse, B. M. et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 8, 1800409 (2018).

    Article  Google Scholar 

  39. Zheng, T. & Dahn, J. R. Hysteresis observed in quasi open-circuit voltage measurements of lithium insertion in hydrogen-containing carbons. J. Power Sources 68, 201–203 (1997).

    Article  Google Scholar 

  40. Zheng, T., McKinnon, W. R. & Dahn, J. R. Hysteresis during lithium insertion in hydrogen‐containing carbons. J. Electrochem. Soc. 143, 2137–2145 (1996).

    Article  Google Scholar 

  41. Yu, H.-C. et al. Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760–1768 (2014).

    Article  Google Scholar 

  42. Inaba, M., Fujikawa, M., Abe, T. & Ogumi, Z. Calorimetric study on the hysteresis in the charge–discharge profiles of mesocarbon microbeads heat-treated at low temperatures. J. Electrochem. Soc. 147, 4008–4012 (2000).

    Article  Google Scholar 

  43. Bernardi, D., Pawlikowski, E. & Newman, J. A general energy balance for battery systems. J. Electrochem. Soc. 132, 5–12 (1985).

    Article  Google Scholar 

  44. Rao, L. & Newman, J. Heat-generation rate and general energy balance for insertion battery systems. J. Electrochem. Soc. 144, 2697–2704 (1997).

    Article  Google Scholar 

  45. Bandhauer, T. M., Garimella, S. & Fuller, T. F. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011).

    Article  Google Scholar 

  46. Krause, L. J., Jensen, L. D. & Dahn, J. R. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry. J. Electrochem. Soc. 159, A937–A943 (2012).

    Article  Google Scholar 

  47. Downie, L. E. & Dahn, J. R. Determination of the voltage dependence of parasitic heat flow in lithium ion cells using isothermal microcalorimetry. J. Electrochem. Soc. 161, A1782–A1787 (2014).

    Article  Google Scholar 

  48. Downie, L. E., Hyatt, S. R., Wright, A. T. B. & Dahn, J. R. Determination of the time dependent parasitic heat flow in lithium ion cells using isothermal microcalorimetry. J. Phys. Chem. C 118, 29533–29541 (2014).

    Article  Google Scholar 

  49. Downie, L. E., Hyatt, S. R. & Dahn, J. R. The impact of electrolyte composition on parasitic reactions in lithium ion cells charged to 4.7 V determined using isothermal microcalorimetry. J. Electrochem. Soc. 163, A35–A42 (2016).

    Article  Google Scholar 

  50. Wen, C. J. & Huggins, R. A. Thermodynamic study of the lithium–tin system. J. Electrochem. Soc. 128, 1181–1187 (1981).

    Article  Google Scholar 

  51. Dahn, J. R. & Haering, R. R. Entropy measurements on LixTiS2. Can. J. Phys. 61, 1093–1098 (1983).

    Article  Google Scholar 

  52. Reynier, Y., Yazami, R. & Fultz, B. The entropy and enthalpy of lithium intercalation into graphite. J. Power Sources 119–121, 850–855 (2003).

    Article  Google Scholar 

  53. Forgez, C., Do, D. V., Friedrich, G., Morcrette, M. & Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J. Power Sources 195, 2961–2968 (2010).

    Article  Google Scholar 

  54. Schmidt, J. P., Weber, A. & Ivers-Tiffée, E. A novel and precise measuring method for the entropy of lithium-ion cells: ΔS via electrothermal impedance spectroscopy. Electrochim. Acta 137, 311–319 (2014).

    Article  Google Scholar 

  55. Tarascon, J.-M., Gozdz, A. S., Schmutz, C., Shokoohi, F. & Warren, P. C. Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ion. 86, 49–54 (1996).

    Article  Google Scholar 

  56. Kjelstrup, S. & Bedeaux, D. Non-equilibrium Thermodynamics of Heterogeneous Systems (World Scientific, 2008).

  57. Richter, F., Gunnarshaug, A., Burheim, O. S., Vie, P. J. S. & Kjelstrup, S. Single electrode entropy change for LiCoO2 electrodes. ECS Trans. 80, 219–238 (2017).

    Article  Google Scholar 

  58. Santhanagopalan, S., Guo, Q., Ramadass, P. & White, R. E. Review of models for predicting the cycling performance of lithium ion batteries. J. Power Sources 156, 620–628 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

J.-M.T. and G.A. acknowledge funding from the European Research Council (FP/2014)/European Research Council Grant-Project 670116-ARPEMA. S.L.G. thanks NSERC and the Walter C. Sumner Foundation for funding. We are grateful to J. Dahn for providing access to some of the equipment used in this work.

Author information

Authors and Affiliations

Authors

Contributions

G.A. and S.L.G. conceived the idea. G.A. prepared the electrochemical cells. S.L.G. performed the isothermal calorimetry experiments. G.A. and C.D. performed the thermodynamic analysis. J.-M.T. supervised the project. G.A. wrote the paper, with contributions from all authors.

Corresponding authors

Correspondence to Charles Delacourt or Jean-Marie Tarascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assat, G., Glazier, S.L., Delacourt, C. et al. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat Energy 4, 647–656 (2019). https://doi.org/10.1038/s41560-019-0410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-019-0410-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing