Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Formulating energy density for designing practical lithium–sulfur batteries

Abstract

The lithium–sulfur (Li–S) battery is one of the most promising battery systems due to its high theoretical energy density and low cost. Despite impressive progress in its development, there has been a lack of comprehensive analyses of key performance parameters affecting the energy density of Li–S batteries. Here, we analyse the potential causes of energy loss during battery operations. We identify two key descriptors (Rweight and Renergy) that represent the mass- and energy-level compromise of the full-cell energy density, respectively. A formulation for energy density calculations is proposed based on critical parameters, including sulfur mass loading, sulfur mass ratio, electrolyte/sulfur ratio and negative-to-positive electrode material ratio. The current progress of Ah-level Li–S batteries is also summarized and analysed. Finally, future research directions, targets and prospects for designing practical high-performance Li–S batteries are proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formulation of energy density and effects from key parameters.
Fig. 2: Representative Ah-level Li–S battery pouch cells with key design parameters.

Similar content being viewed by others

References

  1. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  2. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  3. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Article  Google Scholar 

  4. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  Google Scholar 

  5. Liu, Y., Zhou, G., Liu, K. & Cui, Y. Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Rev. 50, 2895–2905 (2017).

    Article  Google Scholar 

  6. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    Article  Google Scholar 

  7. Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

    Article  Google Scholar 

  8. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    Article  Google Scholar 

  9. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  Google Scholar 

  10. Zheng, G. et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 13, 1265–1270 (2013).

    Article  Google Scholar 

  11. Wang, H., Zhang, W., Xu, J. & Guo, Z. Advances in polar materials for lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707520 (2018).

    Article  Google Scholar 

  12. Zhou, G., Paek, E., Hwang, G. S. & Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015).

    Article  Google Scholar 

  13. Peng, H.-J., Huang, J.-Q., Cheng, X.-B. & Zhang, Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).

    Article  Google Scholar 

  14. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  15. Zhao, Y. et al. Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 31, 1806532 (2019).

    Article  Google Scholar 

  16. Yang, X., Li, X., Adair, K., Zhang, H. & Sun, X. Structural design of lithium–sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018).

    Article  Google Scholar 

  17. Yuan, H. et al. A review of functional binders in lithium–sulfur batteries. Adv. Energy Mater. 8, 1802107 (2018).

    Article  Google Scholar 

  18. Zhang, S., Ueno, K., Dokko, K. & Watanabe, M. Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015).

    Article  Google Scholar 

  19. McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015).

    Article  Google Scholar 

  20. Dörfler, S. et al. Challenges and key parameters of lithium–sulfur batteries on pouch cell level. Joule 4, 539–554 (2020).

    Article  Google Scholar 

  21. Xue, W. et al. Gravimetric and volumetric energy densities of lithium–sulfur batteries. Curr. Opin. Electrochem. 6, 92–99 (2017).

    Article  Google Scholar 

  22. Chen, Y. et al. Key materials and technology research progress of lithium–sulfur batteries. Energy Storage Sci. Tech. 6, 169–189 (2017).

    Google Scholar 

  23. Bower, G. Tesla Model 3 2170 Energy Density Compared To Bolt, Model S P100D https://insideevs.com/news/342679/tesla-model-3-2170-energy-density-compared-to-bolt-model-s-p100d/ (2019).

  24. Wu, F. et al. Sulfur nanodots stitched in 2D “bubble-like” interconnected carbon fabric as reversibility-enhanced cathodes for lithium–sulfur batteries. ACS Nano 11, 4694–4702 (2017).

    Article  Google Scholar 

  25. Qu, C. et al. LiNO3-free electrolyte for Li–S battery: a solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 39, 262–272 (2017).

    Article  Google Scholar 

  26. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

    Article  Google Scholar 

  27. Congress, G. C. Sion Power Reports 400 Wh/kg, 700 Wh/L and 350 Cycles under 1C for Li-ion Battery with Li-metal Anode Technology https://www.greencarcongress.com/2016/10/20161003-sion.html (2016).

  28. Ye, Y. et al. Toward practical high-energy batteries: a modular-assembled oval-like carbon microstructure for thick sulfur electrodes. Adv. Mater. 29, 1700598 (2017).

    Article  Google Scholar 

  29. Chen, J. et al. Improving lithium–sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels. Nano Lett. 17, 3061–3067 (2017).

    Article  Google Scholar 

  30. Energy, O. OXIS Energy is Close to Achieving 500Wh/kg and is Targeting 600Wh/kg with Solid State Lithium Sulfur Technology https://45uevg34gwlltnbsf2plyua1-wpengine.netdna-ssl.com/wp-content/uploads/2020/01/500-and-600-whkg-pressor.pdf (2020).

  31. Chen, J. New Achievements in Li–S Batteries R&D at Dalian Institute of Chemical Physics http://english.dicp.cas.cn/ns_17179/ue/201509/t20150928_153096.html (2015).

  32. Wang, W., Wang, A. & Jin, C. Challenges on practicalization of lithium sulfur batteries. Energy Storage Sci. Tech. 9, 593–597 (2020).

    Google Scholar 

  33. Industry, E. S. P. Product Description http://www.energas-group.cn/nav/45.html (2018).

  34. Microsystems, B. High Energy, Lightweight Batteries http://barnardmicrosystems.com/UAV/engines/batteries.html (2018).

  35. Fotouhi, A., A., D., O’Neill, L., Cleaver, T. & Walus, S. Lithium–sulfur battery technology readiness and applications—a review. Energies 10, 1937 (2017).

    Article  Google Scholar 

  36. Service, R. F. Lithium–sulfur batteries poised for leap. Science 359, 1080–1081 (2018).

    Article  Google Scholar 

  37. Harlow, J. E. et al. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies. J. Electrochem. Soc. 166, A3031–A3044 (2019).

    Article  Google Scholar 

  38. Chung, S.-H. & Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater. 31, 1901125 (2019).

    Article  Google Scholar 

  39. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Article  Google Scholar 

  40. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  Google Scholar 

  41. Chen, H. et al. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nat. Energy 6, 790–798 (2021).

    Article  Google Scholar 

  42. Ye, Y. et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020).

    Article  Google Scholar 

  43. Argyrou, M. C., Christodoulides, P. & Kalogirou, S. A. Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94, 804–821 (2018).

    Article  Google Scholar 

  44. Cano, Z. P. et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 3, 279–289 (2018).

    Article  Google Scholar 

  45. Yang, C. Running battery electric vehicles with extended range: coupling cost and energy analysis. Appl. Energy 306, 118116 (2022).

    Article  Google Scholar 

  46. Duffner, F., Wentker, M., Greenwood, M. & Leker, J. Battery cost modeling: a review and directions for future research. Renew. Sustain. Energy Rev. 127, 109872 (2020).

    Article  Google Scholar 

  47. Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114, 11414–11443 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The perspective was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Battery Materials Research (BMR) Program and the Battery500 Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

Y.C. is the founder and a board director of Amprius Inc., which develops Si anodes. He owns shares in Amprius. G.Z. and H.C. declare no competing interests.

Peer review

Peer review information

Nature Energy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat Energy 7, 312–319 (2022). https://doi.org/10.1038/s41560-022-01001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01001-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing