Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single organic molecules for photonic quantum technologies

Abstract

Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polyaromatic hydrocarbons.
Fig. 2: Single-molecule-based single-photon sources.
Fig. 3: A single molecule acting as a nonlinear medium.
Fig. 4: Molecule–photon interfaces.
Fig. 5: Using single molecules for quantum sensing.

Similar content being viewed by others

References

  1. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  CAS  Google Scholar 

  2. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  Google Scholar 

  3. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  CAS  Google Scholar 

  4. Sangouard, N. & Zbinden, H. What are single photons good for? J. Mod. Opt. 59, 1458–1464 (2012).

    Article  Google Scholar 

  5. Gatto Monticone, D. et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett. 113, 143602 (2014).

    Article  CAS  Google Scholar 

  6. Lombardi, P. et al. A molecule‐based single‐photon source applied in quantum radiometry. Adv. Quantum Technol. 3, 1900083 (2019).

    Article  Google Scholar 

  7. Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  Google Scholar 

  8. Basché, T., Moerner, W. E., Orrit, M. & Wild, U. P. Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, 1997).

  9. Plakhotnik, T., Donley, E. A. & Wild, U. P. Single-molecule spectroscopy. Annu. Rev. Phys. Chem. 48, 181–212 (1997).

    Article  CAS  Google Scholar 

  10. Kozankiewicz, B. & Orrit, M. Single-molecule photophysics, from cryogenic to ambient conditions. Chem. Soc. Rev. 43, 1029–1043 (2014).

    Article  CAS  Google Scholar 

  11. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  CAS  Google Scholar 

  12. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  13. Zürner, A., Kirstein, J., Döblinger, M., Bräuchle, C. & Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 450, 705–708 (2007).

    Article  Google Scholar 

  14. Buchler, B. C., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

    Article  CAS  Google Scholar 

  15. Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    Article  CAS  Google Scholar 

  16. Basché, T., Moerner, W. E., Orrit, M. & Talon, H. Photon antibunching in the fluorescence of single dye molecule trapped in a solid. Phys. Rev. Lett. 69, 1516–1519 (1992).

    Article  Google Scholar 

  17. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).

    Article  CAS  Google Scholar 

  18. Gerhardt, I. et al. Coherent state preparation and observation of Rabi oscillations in a single molecule. Phys. Rev. A 79, 011402(R) (2009).

    Article  Google Scholar 

  19. Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

    Article  CAS  Google Scholar 

  20. Trebbia, B., Tamarat, P. & Lounis, B. Indistinguishable near-infrared single photons from an individual organic molecule. Phys. Rev. A 82, 063803 (2010).

    Article  Google Scholar 

  21. Nonn, T. & Plakhotnik, T. Fluorescence excitation spectroscopy of vibronic transitions in single molecules. Chem. Phys. Lett. 336, 97–104 (2001).

    Article  CAS  Google Scholar 

  22. Kiefer, W., Rezai, M., Wrachtrup, J. & Gerhardt, I. An atomic spectrum recorded with a single molecule light source. Appl. Phys. B 122, 38 (2016).

    Article  Google Scholar 

  23. De Martini, F., Di Giuseppe, G. & Marrocco, M. Single-mode generation of quantum photon states by excited single molecules in a microcavity trap. Phys. Rev. Lett. 76, 900–903 (1996).

    Article  CAS  Google Scholar 

  24. Ambrose, W. P. et al. Fluorescence photon antibunching from single molecules on a surface. Chem. Phys. Lett. 269, 365–370 (1997).

    Article  CAS  Google Scholar 

  25. Lounis, B. & Moerner, W. Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

    Article  CAS  Google Scholar 

  26. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  CAS  Google Scholar 

  27. Lenzini, F., Gruhler, N., Walter, N. & Pernice, W. H. P. Diamond as a platform for integrated quantum photonics. Adv. Quantum Technol. 1, 1800061 (2018).

    Article  Google Scholar 

  28. Chakraborty, C., Vamivakas, N. & Englund, D. Advances in quantum light emission from 2D materials. Nanophotonics 8, 2017–2032 (2019).

    Article  Google Scholar 

  29. Rezai, M., Wrachtrup, J. & Gerhardt, I. Coherence properties of molecular single photons for quantum networks. Phys. Rev. X 8, 031026 (2018).

    CAS  Google Scholar 

  30. Nicolet, A. A. L., Hofmann, C., Kol’chenko, M., Kozankiewicz, B. & Orrit, M. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. ChemPhysChem 8, 1215–1220 (2007).

    Article  CAS  Google Scholar 

  31. Toninelli, C. et al. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express 18, 6577–6582 (2010).

    Article  CAS  Google Scholar 

  32. Polisseni, C. et al. Stable, single-photon emitter in a thin organic crystal for application to quantum-photonic devices. Opt. Express 24, 5615–5627 (2016).

    Article  CAS  Google Scholar 

  33. Trebbia, J.-B., Ruf, H., Tamarat, P. & Lounis, B. Efficient generation of near-infrared single photons from the zero-phonon line of a single molecule. Opt. Express 17, 23986 (2009).

    Article  CAS  Google Scholar 

  34. Chu, X., Götzinger, S. & Sandoghdar, V. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photon. 11, 58–62 (2017).

    Article  CAS  Google Scholar 

  35. Colautti, M. et al. A 3D polymeric platform for photonic quantum technologies. Adv. Quantum Technol. 3, 2000004 (2020).

    Article  CAS  Google Scholar 

  36. Lee, K. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photon. 5, 166–169 (2011).

    Article  CAS  Google Scholar 

  37. Zirkelbach, J. et al. Partial cloaking of a gold particle by a single molecule. Phys. Rev. Lett. 125, 123603 (2020).

    Article  Google Scholar 

  38. Siyushev, P., Stein, G., Wrachtrup, J. & Gerhardt, I. Molecular photons interfaced with alkali atoms. Nature 509, 66–70 (2014).

    Article  CAS  Google Scholar 

  39. Kiraz, A. et al. Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 223602 (2005).

    Article  CAS  Google Scholar 

  40. Lombardi, P. et al. Indistinguishable photons on demand from an organic dye molecule. Preprint at https://arxiv.org/abs/2102.13055 (2021).

  41. Wild, U. P., Guettler, F., Pirotta, M. & Renn, A. Single molecule spectroscopy: Stark effect of pentacene in p-terphenyl. Chem. Phys. Lett. 193, 451–455 (1992).

    Article  CAS  Google Scholar 

  42. Rezai, M., Wrachtrup, J. & Gerhardt, I. Polarization-entangled photon pairs from a single molecule. Optica 6, 34–40 (2019).

    Article  CAS  Google Scholar 

  43. Brunel, C., Tamarat, P., Lounis, B., Woehl, J. C. & Orrit, M. Stark effect on single molecules of dibenzanthanthrene in naphthalene crystal and in a n-hexadecane Shpol’skii matrix. J. Phys. Chem. A 103, 2429–2434 (1999).

    Article  CAS  Google Scholar 

  44. Moradi, A., Ristanović, Z., Orrit, M., Deperasińska, I. & Kozankiewicz, B. Matrix‐induced linear Stark effect of single dibenzoterrylene molecules in 2,3‐dibromonaphthalene crystal. Chem. Phys. Chem. 20, 55–61 (2019).

    Article  CAS  Google Scholar 

  45. Schaedler, K. et al. Electrical control of lifetime-limited quantum emitters using 2D materials. Nano Lett. 19, 3789–3795 (2019).

    Article  Google Scholar 

  46. Colautti, M. et al. Laser-induced frequency tuning of Fourier-limited single-molecule emitters. ACS Nano 14, 13584–13592 (2020).

    Article  Google Scholar 

  47. Lombardi, P. et al. Photostable molecules on chip: integrated sources of nonclassical light. ACS Photon. 5, 126–132 (2018).

    Article  CAS  Google Scholar 

  48. Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    Article  CAS  Google Scholar 

  49. Mollow, B. R. Stimulated emission and absorption near resonance for driven systems. Phys. Rev. A 5, 2217–2222 (1972).

    Article  Google Scholar 

  50. Lounis, B., Jelezko, F. & Orrit, M. Single molecules driven by strong resonant fields: hyper-Raman and subharmonic resonances. Phys. Rev. Lett. 78, 3673–3676 (1997).

    Article  Google Scholar 

  51. Lezama, A., Zhu, Y., Kanskar, M. & Mossberg, T. W. Radiative emission of driven two-level atoms into the modes of an enclosing optical cavity: the transition from fluorescence to lasing. Phys. Rev. A 41, 1576–1581 (1990).

    Article  CAS  Google Scholar 

  52. Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photon. 10, 450–453 (2016).

    Article  CAS  Google Scholar 

  53. Leuchs, G. & Sondermann, M. Light–matter interaction in free space. J. Mod. Opt. 60, 36–42 (2013).

    Article  CAS  Google Scholar 

  54. Barnes, W. L. et al. Solid-state single photon sources: light collection strategies. Eur. Phys. J. D 18, 197–210 (2002).

    Article  CAS  Google Scholar 

  55. Checcucci, S. et al. Beaming light from a quantum emitter with a planar optical antenna. Light. Sci. Appl. 6, e16245 (2017).

    Article  CAS  Google Scholar 

  56. Skoff, S. M., Papencordt, D., Schauffert, H., Bayer, B. C. & Rauschenbeutel, A. Optical-nanofiber-based interface for single molecules. Phys. Rev. A 97, 043839 (2018).

    Article  CAS  Google Scholar 

  57. Stein, G., Bushmakin, V., Wang, Y., Schell, A. W. & Gerhardt, I. Narrow-band fiber-coupled single-photon source. Phys. Rev. Appl. 13, 054042 (2020).

    Article  CAS  Google Scholar 

  58. Faez, S., Türschmann, P., Haakh, H. R., Götzinger, S. & Sandoghdar, V. Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113, 213601 (2014).

    Article  Google Scholar 

  59. Ferrari, S., Schck, C. & Pernice, W. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1728 (2018).

    Article  CAS  Google Scholar 

  60. Türschmann, P. et al. Chip-based all-optical control of single molecules coherently coupled to a nanoguide. Nano Lett. 17, 4941–4945 (2017).

    Article  Google Scholar 

  61. Boissier, S. et al. Coherent characterisation of a single molecule in a photonic black box. Nat. Commun. 12, 706 (2021).

    Article  CAS  Google Scholar 

  62. Hwang, J. & Hinds, E. A. Dye molecules as single-photon sources and large optical nonlinearities on a chip. New J. Phys. 13, 085009 (2011).

    Article  Google Scholar 

  63. Rivoire, K. et al. Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities. Appl. Phys. Lett. 95, 123113 (2009).

    Article  Google Scholar 

  64. Ciancico, C. et al. Narrow line width quantum emitters in an electron-beam-shaped polymer. ACS Photon. 6, 3120–3125 (2019).

    Article  CAS  Google Scholar 

  65. Shi, Q. et al. Wiring up pre-characterized single-photon emitters by laser lithography. Sci. Rep. 6, 31135 (2016).

    Article  CAS  Google Scholar 

  66. Hail, C. U. et al. Nanoprinting organic molecules at the quantum level. Nat. Commun. 10, 1880 (2019).

    Article  Google Scholar 

  67. Kewes, G. et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 6, 28877 (2016).

    Article  CAS  Google Scholar 

  68. Grandi, S. et al. Hybrid plasmonic waveguide coupling of photons from a single molecule. APL Photon. 4, 086101 (2019).

    Article  Google Scholar 

  69. Rattenbacher, D. et al. Coherent coupling of single molecules to on-chip ring resonators. New J. Phys. 21, 062002 (2019).

    Article  CAS  Google Scholar 

  70. Toninelli, C. et al. A scanning microcavity for in situ control of single-molecule emission. Appl. Phys. Lett. 97, 021107 (2010).

    Article  Google Scholar 

  71. Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry–Perot microscavity. Phys. Rev. X 7, 021014 (2017).

    Google Scholar 

  72. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  CAS  Google Scholar 

  73. Zhang, J. L. et al. Strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond. Nano Lett. 18, 1360–1365 (2018).

    Article  CAS  Google Scholar 

  74. Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible switching of ultrastrong light-molecule coupling. Phys. Rev. Lett. 106, 196405 (2011).

    Article  CAS  Google Scholar 

  75. Haakh, H. R., Faez, S. & Sadoghdar, V. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide. Phys. Rev. A 94, 053840 (2016).

    Article  Google Scholar 

  76. Kim, J., Yang, D., Oh, S.-H. & An, K. Coherent single-atom superradiance. Science 359, 662–666 (2018).

    Article  CAS  Google Scholar 

  77. Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).

    Article  CAS  Google Scholar 

  78. Gerhardt, I., Wrigge, G., Hwang, J., Zumofen, G. & Sandoghdar, V. Coherent nonlinear single molecule microscopy. Phys. Rev. A 82, 063823 (2010).

    Article  Google Scholar 

  79. Orrit, M., Bernard, J., Zumbusch, A. & Personov, R. Stark effect on single molecules in a polymer matrix. Chem. Phys. Lett. 196, 595–600 (1992).

    Article  CAS  Google Scholar 

  80. Brunel, C., Lounis, B., Tamarat, P. & Orrit, M. Rabi resonances of a single molecule driven by rf and laser fields. Phys. Rev. Lett. 81, 2679–2682 (1998).

    Article  CAS  Google Scholar 

  81. Caruge, J. M. & Orrit, M. Probing local currents in semiconductors with single molecules. Phys. Rev. B 64, 205202 (2001).

    Article  Google Scholar 

  82. Kador, L., Latychevskaia, T., Renn, A. & Wild, U. P. Radio-frequency Stark effect modulation of single-molecule lines. J. Lumin. 86, 189–194 (2000).

    Article  CAS  Google Scholar 

  83. Plakhotnik, T. Sensing single electrons with single molecules. J. Lumin. 127, 235–238 (2007).

    Article  CAS  Google Scholar 

  84. Faez, S., van der Molen, S. & Orrit, M. Optical tracing of multiple charges in single-electron devices. Phys. Rev. B 90, 205405 (2014).

    Article  Google Scholar 

  85. Plakhotnik, T. Single-molecule dynamic triangulation. ChemPhysChem 7, 1699–1704 (2006).

    Article  CAS  Google Scholar 

  86. Croci, M., Müschenborn, H.-J., Güttler, F., Renn, A. & Wild, U. P. Single molecule spectroscopy: pressure effect on pentacene in p-terphenyl. Chem. Phys. Lett. 212, 71–77 (1993).

    Article  CAS  Google Scholar 

  87. Kol’chenko, M. A. et al. Single molecules detect ultra-slow oscillators in a molecular crystal excited by ac voltages. New J. Phys. 11, 023037 (2009).

    Article  Google Scholar 

  88. Tian, Y., Navarro, P. & Orrit, M. Single molecule as a local acoustic detector for mechanical oscillators. Phys. Rev. Lett. 113, 135505 (2014).

    Article  Google Scholar 

  89. Puller, V., Lounis, B. & Pistolesi, F. Single molecule detection of nanomechanical motion. Phys. Rev. Lett. 110, 125501 (2013).

    Article  Google Scholar 

  90. Dutreix, C., Avriller, R., Lounis, B. & Pistolesi, F. Two-level system as topological actuator for nano-mechanical modes. Phys. Rev. Res. 2, 023268 (2020).

    Article  CAS  Google Scholar 

  91. Bauer, M. & Kador, L. Zeeman effect of single-molecule lines. Chem. Phys. Lett. 407, 450–453 (2005).

    Article  CAS  Google Scholar 

  92. Wrachtrup, J., von Borczyskowski, C., Bernard, J., Orrit, M. & Brown, R. Optical detection of magnetic resonance in a single molecule. Nature 363, 244–245 (1993).

    Article  CAS  Google Scholar 

  93. Köhler, J. et al. Magnetic resonance of a single molecular spin. Nature 363, 242–244 (1993).

    Article  Google Scholar 

  94. Brouwer, A. C. J., Groenen, E. J. J. & Schmidt, J. Detecting magnetic resonance through quantum jumps of single molecules. Phys. Rev. Lett. 80, 3944 (1998).

    Article  CAS  Google Scholar 

  95. Gaudreau, L. et al. Universal distance-scaling of nonradiative energy transfer to graphene. Nano Lett. 13, 2030–2035 (2013).

    Article  CAS  Google Scholar 

  96. Mazzamuto et al. Single-molecule study for a graphene-based nano-position sensor. New J. Phys. 16, 113007 (2014).

    Article  Google Scholar 

  97. Das, S., Elfving, V. E., Faez, S. & Sorensen, A. S. Interfacing superconducting qubits and single optical photons using molecules in waveguides. Phys. Rev. Lett. 118, 140501 (2017).

    Article  Google Scholar 

  98. Muschik, C. A. et al. Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112, 223601 (2014).

    Article  Google Scholar 

  99. Carusotto, J. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  100. Sandoghdar, V. Nano-optics in 2020 ± 20. Nano Lett. 20, 4721–4723 (2020).

    Article  CAS  Google Scholar 

  101. Philippe Roelli, P., Galland, C., Piro, N. & Kippenberg, T. J. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol. 11, 164–169 (2016).

    Article  Google Scholar 

  102. Clear, C. et al. Phonon-induced optical dephasing in single organic molecules. Phys. Rev. Lett. 124, 153602 (2020).

    Article  CAS  Google Scholar 

  103. Reitz, M. et al. Molecule–photon interactions in phononic environments. Phys. Rev. Res. 2, 033270 (2020).

    Article  CAS  Google Scholar 

  104. Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

    Article  CAS  Google Scholar 

  105. Bonizzoni, C. et al. Storage and retrieval of microwave pulses with molecular spin ensembles. npj Quantum Inf. 6, 68 (2020).

    Article  Google Scholar 

  106. Bayliss, S. L. et al. Optically addressable molecular spins for quantum information processing. Science 370, 1309–1312 (2020).

    Article  CAS  Google Scholar 

  107. Pazzagli, S. et al. Self-assembled nanocrystals of polycyclic aromatic hydrocarbons show photostable single-photon emission. ACS Nano 12, 4295–4303 (2018).

    Article  CAS  Google Scholar 

  108. Hildner, R., Brinks, D., Nieder, J. B., Cogdell, R. J. & van Hulst, N. F. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340, 1448–1451 (2013).

    Article  CAS  Google Scholar 

  109. Liebel, M., Toninelli, C. & van Hulst, N. F. Room-temperature ultrafast nonlinear spectroscopy of a single molecule. Nat. Photon. 12, 45–49 (2018).

    Article  CAS  Google Scholar 

  110. Zhang, L. et al. Electrically driven single-photon emission from an isolated single molecule. Nat. Commun. 8, 580 (2017).

    Article  Google Scholar 

  111. Nicolet, A., Kol’chenko, M., Kozankiewicz, B. & Orrit, M. Intermolecular intersystem-crossing in single-molecule spectroscopy, terrylene in anthracene crystals. J. Chem. Phys. 124, 164711 (2006).

    Article  CAS  Google Scholar 

  112. Ambrose, W. P., Basché, T. & Moerner, W. E. Detection and spectroscopy of single pentacene molecules in a p‐terphenyl crystal by means of fluorescence excitation. J. Chem. Phys. 95, 7150–7163 (1991).

    Article  CAS  Google Scholar 

  113. Sola, M. Forty years of Clar’s aromatic π-sextet rule. Front. Chem. https://doi.org/10.3389/fchem.2013.00022 (2013).

  114. Avlasevich, Y. & Müllen, K. Dibenzopentarylenebis(dicarboximide)s: novel near-infrared absorbing dyes. Chem. Commun. 42, 4440–4442 (2006).

    Article  Google Scholar 

  115. Langhals, H., Zgela, D. & Lüling, R. Sexterrylenetetracarboxylic bisimides: NIR dyes. J. Org. Chem. 80, 12146–12150 (2015).

    Article  CAS  Google Scholar 

  116. Henry, B. R. & Siebrand, W. in Organic Molecular Photophysics (ed. Birks, J. B.) Ch. 4 (Wiley, 1973).

  117. Sakamoto, Y. et al. Perfluoropentacene and perfluorotetracene: syntheses, crystal structures, and FET characteristics. Mol. Cryst. Liq. Cryst. 444, 225–232 (2006).

    Article  CAS  Google Scholar 

  118. Yamada, H. Photochemical synthesis of pentacene and its derivatives. Chem. Eur. J. 11, 6212–6220 (2005).

    Article  CAS  Google Scholar 

  119. Watanabe, M. et al. The synthesis, crystal structure and charge transport properties of hexacene. Nat. Chem. 4, 574–578 (2012).

    Article  CAS  Google Scholar 

  120. Jancarik, A., levet, G. & Gourdon, A. A practical general method for the preparation of long acenes. Chem. Eur. J. 25, 2366–2374 (2019).

    Article  CAS  Google Scholar 

  121. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    Article  CAS  Google Scholar 

  122. Schofield, R. C. et al. Efficient excitation of dye molecules for single photon generation. J. Phys. Commun. 2, 115027 (2018).

    Article  CAS  Google Scholar 

  123. Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Dispersion cancellation in a measurement of the single-photon propagation velocity in glass. Phys. Rev. Lett. 68, 2421–2424 (1992).

    Article  CAS  Google Scholar 

  124. Bennet, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  Google Scholar 

  125. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  CAS  Google Scholar 

  126. Grandi, S. et al. Quantum dynamics of a driven two-level molecule with variable dephasing. Phys. Rev. A 94, 063839 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the EraNET Cofund Initiatives QuantERA within the European Union’s Horizon 2020 research and innovation programme grant agreement no. 731473 (project ORQUID). A.S.C. acknowledges a University Research Fellowship from the Royal Society (UF160475) and funding from the EPSRC (EP/P030130/1, EP/P01058X/1 and EP/R044031/1). W.H.P. and I.G. acknowledge funding from the Deutsche Forschungs gemeinschaft (DFG) - Projektnummer 332724366 and GE2737/5-1, respectively. F.H.L.K. and A.R.-P. acknowledge support from the Government of Spain (FIS2016-81044; Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya (CERCA, AGAUR, SGR 1656). Furthermore, the research leading to these results has received funding from the European Union’s Horizon 2020 under grant agreement no. 820378 (Quantum Flagship). We thank A. Moradi for discussions and NWO (The Dutch Research Council) for funding of his PhD grant on sensing of single charges. C.T. thanks A. Renn for always useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Toninelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toninelli, C., Gerhardt, I., Clark, A.S. et al. Single organic molecules for photonic quantum technologies. Nat. Mater. 20, 1615–1628 (2021). https://doi.org/10.1038/s41563-021-00987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00987-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing