Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet

Abstract

Magnetic skyrmions are topologically stable swirling spin textures that appear as particle-like objects in two-dimensional (2D) systems. Here, utilizing scalar magnetic X-ray tomography under applied magnetic fields, we report the direct visualization of the three-dimensional (3D) shape of individual skyrmion strings in the room-temperature skyrmion-hosting non-centrosymmetric compound Mn1.4Pt0.9Pd0.1Sn. Through the tomographic reconstruction of the 3D distribution of the [001] magnetization component on the basis of transmission images taken at various angles, we identify a skyrmion string running through the entire thickness of the sample, as well as various defect structures, such as the interrupted and Y-shaped strings. The observed point defect may represent the Bloch point serving as an emergent magnetic monopole, as proposed theoretically. Our tomographic approach with a tunable magnetic field paves the way for direct visualization of the structural dynamics of individual skyrmion strings in 3D space, which will contribute to a better understanding of the creation, annihilation and transfer of these topological objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up for the scalar magnetic X-ray tomography measurements.
Fig. 2: Magnetic field dependence of XMCD images taken from various angles θ.
Fig. 3: 3D distribution of mc in the skyrmion state obtained by the tomographic reconstruction.
Fig. 4: Reconstructed 3D shape of magnetic skyrmion strings.

Similar content being viewed by others

Data availability

The data presented in the current study are available from the corresponding authors on reasonable request.

References

  1. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  Google Scholar 

  2. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  Google Scholar 

  3. Rößler, U. K. et al. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  Google Scholar 

  4. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  5. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  Google Scholar 

  6. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  CAS  Google Scholar 

  7. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  CAS  Google Scholar 

  8. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  Google Scholar 

  9. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article  CAS  Google Scholar 

  10. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

  11. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, X. et al. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  Google Scholar 

  13. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).

    Article  Google Scholar 

  14. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  15. Kagawa, F. et al. Current-induced viscoelastic topological unwinding of metastable skyrmion strings. Nat. Commun. 8, 1332 (2017).

    Article  Google Scholar 

  16. Yokouchi, T. et al. Current-induced dynamics of skyrmion strings. Sci. Adv. 4, eaat1115 (2018).

    Article  CAS  Google Scholar 

  17. Koshibae, W. & Nagaosa, N. Dynamics of skyrmion in disordered chiral magnet of thin film form. Sci. Rep. 9, 5111 (2019).

    Article  Google Scholar 

  18. Seki, S. et al. Propagation dynamics of spin excitations along skyrmion strings. Nat. Commun. 11, 256 (2020).

    Article  CAS  Google Scholar 

  19. Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

    Article  CAS  Google Scholar 

  20. Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638 (2015).

    Article  CAS  Google Scholar 

  21. Kézsmárki, I. et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater. 14, 1116–1122 (2015).

    Article  Google Scholar 

  22. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  CAS  Google Scholar 

  23. Zhang, S. et al. Reciprocal space tomography of 3D skyrmion lattice order in a chiral magnet. Proc. Natl Acad. Sci. USA 115, 6386–6391 (2018).

    Article  CAS  Google Scholar 

  24. Park, H. S. et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 9, 337–342 (2014).

    Article  CAS  Google Scholar 

  25. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article  CAS  Google Scholar 

  26. Birch, M. T. et al. Real-space imaging of confined magnetic skyrmion tubes. Nat. Commun. 11, 1726 (2020).

    Article  CAS  Google Scholar 

  27. Yu, X. Z. et al. Real-space observation of topological defects in extended skyrmion-strings. Nano Lett. 20, 7313–7320 (2020).

    Article  CAS  Google Scholar 

  28. Donnelly, C. et al. Three-dimensional magnetization structures revealed with X-ray vector nanotomography. Nature 547, 328–331 (2017).

    Article  CAS  Google Scholar 

  29. Suzuki, M. et al. Three-dimensional visualization of magnetic domain structure with strong uniaxial anisotropy via scanning hard X-ray microtomography. Appl. Phys. Exp. 11, 036601 (2018).

    Article  Google Scholar 

  30. Hierro-Rodriguez, A. et al. Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges. Nat. Commun. 11, 6382 (2020).

    Article  CAS  Google Scholar 

  31. Donnelly, C. et al. Imaging three-dimensional magnetic systems with X-rays. J. Phys. Condens. Matter 32, 213001 (2020).

    Article  CAS  Google Scholar 

  32. Schütte, C. & Rosch, A. Dynamics and energetics of emergent magnetic monopoles in chiral magnets. Phys. Rev. B 90, 174432 (2014).

    Article  Google Scholar 

  33. Vir, P. et al. Anisotropic topological Hall effect with real and momentum space Berry curvature in the antiskrymion-hosting Heusler compound Mn1.4PtSn. Phys. Rev. B 99, 140406(R) (2019).

    Article  Google Scholar 

  34. Ma, T. et al. Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D2d Heusler compound. Adv. Mater. 32, 2002043 (2020).

    Article  CAS  Google Scholar 

  35. Jena, J. et al. Elliptical Bloch skyrmion chiral twins in an antiskyrmion system. Nat. Commun. 11, 1115 (2020).

    Article  Google Scholar 

  36. Srivastava, A. K. et al. Observation of robust Néel skyrmions in metallic PtMnGa. Adv. Mater. 32, 1904327 (2020).

    Article  CAS  Google Scholar 

  37. Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 5, 170–176 (1986).

    Article  CAS  Google Scholar 

  38. Gordon, R., Bender, R. & Herman, G. T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–476 (1970).

    Article  CAS  Google Scholar 

  39. Rybakov, F. N. et al. New type of stable particlelike states in chiral magnets. Phys. Rev. Lett. 115, 117201 (2015).

    Article  Google Scholar 

  40. Zheng, F. et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat. Nanotechnol. 13, 451–455 (2018).

    Article  CAS  Google Scholar 

  41. Feldtkeller, E. Mikromagnetisch stetige und unstetige Magnetisierungskonfigurationen. Z. Angew. Phys. 19, 530–536 (1965).

    Google Scholar 

  42. DaCol, S. et al. Observation of Bloch-point domain walls in cylindrical. Phys. Rev. B 89, 180405(R) (2011).

    Article  Google Scholar 

  43. Kanazawa, N. et al. Critical phenomena of emergent magnetic monopoles in a chiral magnet. Nat. Commun. 7, 11622 (2016).

    Article  CAS  Google Scholar 

  44. Fujishiro, Y. et al. Large magneto-thermopower in MnGe with topological spin texture. Nat. Commun. 9, 408 (2018).

    Article  CAS  Google Scholar 

  45. Donnelly, C. et al. Experimental observation of vortex rings in a bulk magnet. Nat. Phys. 17, 316–321 (2020).

    Article  Google Scholar 

  46. Suzuki, M. et al. Magnetic microscopy using a circularly polarized hard-X-ray nanoprobe at SPring-8. Synchrotron Radiat. News 33, 4–11 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Peng, X. Z. Yu, N. Nagaosa, T. Arima and A. Kikkawa for enlightening discussions and experimental help. This work was partly supported by Grants-in-Aid for Scientific Research (grant nos. 18H03685, 18K14117, 20H00349, 21H04440, 21H04990, 21K18595, 21K13876) and Grant-in-Aid for Specially Promoted Research (15H05702) from JSPS, PRESTO (grant no. JPMJPR18L5, JPMJPR20B4) and CREST (grant no. JPMJCR1874) from JST, Asahi Glass Foundation and Murata Science Foundation. The synchrotron radiation experiments were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal nos. 2018A2067, 2019B1173 and 2020A2057).

Author information

Authors and Affiliations

Authors

Contributions

S.S., M.S. and T.O. planned the project. S.S., M.S., M.I. and T.O. performed the scalar magnetic X-ray tomography measurements. R.T., N.D.K., S.S., and Y.T. prepared the samples. M.I. and Y.S. supported the sample characterization. M.S. performed the reconstruction of the scalar magnetic tomography data. S.S. and M.S. analysed the reconstructed images and performed the simulation of tomographic reconstruction. K.S., S.S. and W.K. performed the theoretical calculations. S.S. wrote the manuscript with the support from M.S. and T.O. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to S. Seki, M. Suzuki or T. Ono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Materials thanks Daniel Haskel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Notes 1–9.

Supplementary Video 1

A series of XMCD images taken from various angles −90 ≤ θ ≤ 90 with 5 steps. The images taken at selected θ values are shown in Fig. 2 in the main text.

Supplementary Video 2

360 view of the experimentally reconstructed mc(r) profiles. The definition of background colour is the same as in Fig. 3b,c in the main text.

Supplementary Video 3

Slice animation of experimentally reconstructed mc(r) profiles, where the slice position is changed as a function of time. The selected slice images are shown in Fig. 3b,c in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seki, S., Suzuki, M., Ishibashi, M. et al. Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet. Nat. Mater. 21, 181–187 (2022). https://doi.org/10.1038/s41563-021-01141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01141-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing